环保量子自旋霍尔绝缘体铋在石墨烯/SiC界面的可逆开关。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Niclas Tilgner, Susanne Wolff, Serguei Soubatch, Tien-Lin Lee, Andres David Peña Unigarro, Sibylle Gemming, F Stefan Tautz, Thomas Seyller, Christian Kumpf, Fabian Göhler, Philip Schädlich
{"title":"环保量子自旋霍尔绝缘体铋在石墨烯/SiC界面的可逆开关。","authors":"Niclas Tilgner, Susanne Wolff, Serguei Soubatch, Tien-Lin Lee, Andres David Peña Unigarro, Sibylle Gemming, F Stefan Tautz, Thomas Seyller, Christian Kumpf, Fabian Göhler, Philip Schädlich","doi":"10.1038/s41467-025-60440-x","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum spin Hall insulators have been extensively studied both theoretically and experimentally because they exhibit robust helical edge states driven by spin-orbit coupling and offer the potential for applications in spintronics through dissipationless spin transport. Here we show that a single layer of elemental Bi, formed by intercalation of an epitaxial graphene buffer layer on SiC(0001), is a promising candidate for a quantum spin Hall insulator. This layer can be reversibly switched between an electronically inactive precursor state and a bismuthene state, the latter exhibiting the predicted band structure of a true two-dimensional bismuthene layer. Switching is accomplished by hydrogenation (dehydrogenation) of the sample. A partial passivation (activation) of Si dangling bonds causes a lateral shift of Bi atoms involving a change of the adsorption site. In the bismuthene state, the Bi honeycomb layer is a prospective quantum spin Hall insulator, inherently protected by the graphene sheet above and the H-passivated substrate below.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6171"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227741/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reversible switching of the environment-protected quantum spin Hall insulator bismuthene at the graphene/SiC interface.\",\"authors\":\"Niclas Tilgner, Susanne Wolff, Serguei Soubatch, Tien-Lin Lee, Andres David Peña Unigarro, Sibylle Gemming, F Stefan Tautz, Thomas Seyller, Christian Kumpf, Fabian Göhler, Philip Schädlich\",\"doi\":\"10.1038/s41467-025-60440-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum spin Hall insulators have been extensively studied both theoretically and experimentally because they exhibit robust helical edge states driven by spin-orbit coupling and offer the potential for applications in spintronics through dissipationless spin transport. Here we show that a single layer of elemental Bi, formed by intercalation of an epitaxial graphene buffer layer on SiC(0001), is a promising candidate for a quantum spin Hall insulator. This layer can be reversibly switched between an electronically inactive precursor state and a bismuthene state, the latter exhibiting the predicted band structure of a true two-dimensional bismuthene layer. Switching is accomplished by hydrogenation (dehydrogenation) of the sample. A partial passivation (activation) of Si dangling bonds causes a lateral shift of Bi atoms involving a change of the adsorption site. In the bismuthene state, the Bi honeycomb layer is a prospective quantum spin Hall insulator, inherently protected by the graphene sheet above and the H-passivated substrate below.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"6171\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227741/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60440-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60440-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

量子自旋霍尔绝缘体在理论和实验上都得到了广泛的研究,因为它们在自旋轨道耦合的驱动下表现出强大的螺旋边缘状态,并通过无耗散自旋输运在自旋电子学中提供了应用潜力。本研究表明,在SiC(0001)上嵌入外延石墨烯缓冲层形成的单层元素Bi是量子自旋霍尔绝缘体的理想候选者。该层可以在电子非活性前驱体状态和铋态之间可逆切换,后者显示出真正二维铋层的预测能带结构。转换是通过样品的氢化(脱氢)来完成的。Si悬垂键的部分钝化(活化)引起Bi原子的横向移位,引起吸附位点的改变。在铋态下,Bi蜂窝层是一种有前途的量子自旋霍尔绝缘体,其上有石墨烯片,下有h钝化衬底。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reversible switching of the environment-protected quantum spin Hall insulator bismuthene at the graphene/SiC interface.

Reversible switching of the environment-protected quantum spin Hall insulator bismuthene at the graphene/SiC interface.

Quantum spin Hall insulators have been extensively studied both theoretically and experimentally because they exhibit robust helical edge states driven by spin-orbit coupling and offer the potential for applications in spintronics through dissipationless spin transport. Here we show that a single layer of elemental Bi, formed by intercalation of an epitaxial graphene buffer layer on SiC(0001), is a promising candidate for a quantum spin Hall insulator. This layer can be reversibly switched between an electronically inactive precursor state and a bismuthene state, the latter exhibiting the predicted band structure of a true two-dimensional bismuthene layer. Switching is accomplished by hydrogenation (dehydrogenation) of the sample. A partial passivation (activation) of Si dangling bonds causes a lateral shift of Bi atoms involving a change of the adsorption site. In the bismuthene state, the Bi honeycomb layer is a prospective quantum spin Hall insulator, inherently protected by the graphene sheet above and the H-passivated substrate below.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信