揭示和调节高效氨电合成催化剂的重构。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xinyue Shi, Wei-Hsiang Huang, Ju Rong, Minghui Xie, Qingbo Wa, Ping Zhang, Hainan Wei, Huangyu Zhou, Min-Hsin Yeh, Chih-Wen Pao, Jie Wang, Zhiwei Hu, Xiaohua Yu, Jiwei Ma, Hongfei Cheng
{"title":"揭示和调节高效氨电合成催化剂的重构。","authors":"Xinyue Shi, Wei-Hsiang Huang, Ju Rong, Minghui Xie, Qingbo Wa, Ping Zhang, Hainan Wei, Huangyu Zhou, Min-Hsin Yeh, Chih-Wen Pao, Jie Wang, Zhiwei Hu, Xiaohua Yu, Jiwei Ma, Hongfei Cheng","doi":"10.1038/s41467-025-61075-8","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalytic nitrate reduction (NO<sub>3</sub>RR) is a promising route for sustainable ammonia synthesis under mild conditions. The widely studied Co-based catalysts undergo significant reconstruction due to nitrate oxidation and electric-field reduction during NO<sub>3</sub>RR, leading to activity degradation. To address this issue, we develop a Co<sub>6</sub>Ni<sub>4</sub> heterostructured catalyst that consists of interlaced metallic Co and Ni domains. Operando X-ray absorption spectroscopy and other in-situ characterization techniques, in conjunction with theoretical calculations, demonstrate that Ni domains function as electron reservoir, which transfer electrons to Co and prevent the accumulation of high-valence Co. Besides, the abundant Co/Ni interfaces also facilitate the NO<sub>3</sub>RR process, thereby achieving a NH<sub>3</sub> Faraday efficiency of 99.21%, a NH<sub>3</sub> yield rate of 93.55 mg h<sup>-1</sup> cm<sup>-2</sup>, and a NO<sub>3</sub>RR stability of 120 h. Our analyses delve into the underlying causes of the observed stability of metallic Co in Co<sub>6</sub>Ni<sub>4</sub> and provide compelling evidence that the discrepancy between the adsorption quantity of NO<sub>3</sub><sup>-</sup> on catalyst surface and the corresponding electron supply is a pivotal factor influencing the reconstruction process.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6161"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227543/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revealing and modulating catalyst reconstruction for highly efficient electrosynthesis of ammonia.\",\"authors\":\"Xinyue Shi, Wei-Hsiang Huang, Ju Rong, Minghui Xie, Qingbo Wa, Ping Zhang, Hainan Wei, Huangyu Zhou, Min-Hsin Yeh, Chih-Wen Pao, Jie Wang, Zhiwei Hu, Xiaohua Yu, Jiwei Ma, Hongfei Cheng\",\"doi\":\"10.1038/s41467-025-61075-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrocatalytic nitrate reduction (NO<sub>3</sub>RR) is a promising route for sustainable ammonia synthesis under mild conditions. The widely studied Co-based catalysts undergo significant reconstruction due to nitrate oxidation and electric-field reduction during NO<sub>3</sub>RR, leading to activity degradation. To address this issue, we develop a Co<sub>6</sub>Ni<sub>4</sub> heterostructured catalyst that consists of interlaced metallic Co and Ni domains. Operando X-ray absorption spectroscopy and other in-situ characterization techniques, in conjunction with theoretical calculations, demonstrate that Ni domains function as electron reservoir, which transfer electrons to Co and prevent the accumulation of high-valence Co. Besides, the abundant Co/Ni interfaces also facilitate the NO<sub>3</sub>RR process, thereby achieving a NH<sub>3</sub> Faraday efficiency of 99.21%, a NH<sub>3</sub> yield rate of 93.55 mg h<sup>-1</sup> cm<sup>-2</sup>, and a NO<sub>3</sub>RR stability of 120 h. Our analyses delve into the underlying causes of the observed stability of metallic Co in Co<sub>6</sub>Ni<sub>4</sub> and provide compelling evidence that the discrepancy between the adsorption quantity of NO<sub>3</sub><sup>-</sup> on catalyst surface and the corresponding electron supply is a pivotal factor influencing the reconstruction process.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"6161\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227543/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61075-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61075-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电催化硝酸还原(NO3RR)是一种在温和条件下可持续合成氨的有前途的途径。广泛研究的co基催化剂在NO3RR过程中由于硝酸盐氧化和电场还原而发生了显著的重构,导致活性下降。为了解决这个问题,我们开发了一种由交错金属Co和Ni畴组成的Co6Ni4异质结构催化剂。Operando x射线吸收光谱等原位表征技术结合理论计算表明,Ni畴具有电子储层的功能,将电子转移到Co中,阻止了Co的高价态积累。此外,丰富的Co/Ni界面也促进了NO3RR过程,从而使NH3法拉第效率达到99.21%,NH3产率达到93.55 mg h-1 cm-2, NO3RR稳定性为120 h。我们的分析深入探讨了Co6Ni4中观察到的金属Co稳定性的根本原因,并提供了令人信服的证据,证明催化剂表面NO3-的吸附量与相应的电子供应之间的差异是影响重建过程的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revealing and modulating catalyst reconstruction for highly efficient electrosynthesis of ammonia.

Revealing and modulating catalyst reconstruction for highly efficient electrosynthesis of ammonia.

Electrocatalytic nitrate reduction (NO3RR) is a promising route for sustainable ammonia synthesis under mild conditions. The widely studied Co-based catalysts undergo significant reconstruction due to nitrate oxidation and electric-field reduction during NO3RR, leading to activity degradation. To address this issue, we develop a Co6Ni4 heterostructured catalyst that consists of interlaced metallic Co and Ni domains. Operando X-ray absorption spectroscopy and other in-situ characterization techniques, in conjunction with theoretical calculations, demonstrate that Ni domains function as electron reservoir, which transfer electrons to Co and prevent the accumulation of high-valence Co. Besides, the abundant Co/Ni interfaces also facilitate the NO3RR process, thereby achieving a NH3 Faraday efficiency of 99.21%, a NH3 yield rate of 93.55 mg h-1 cm-2, and a NO3RR stability of 120 h. Our analyses delve into the underlying causes of the observed stability of metallic Co in Co6Ni4 and provide compelling evidence that the discrepancy between the adsorption quantity of NO3- on catalyst surface and the corresponding electron supply is a pivotal factor influencing the reconstruction process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信