Hong Gil Lee, Jinkwang Kim, Kyung-Ho Park, Hongwoo Lee, Sol-Bi Kim, Ji-Yul Jung, Eunha Gwak, Ji Hoon Ahn, Jae-Hoon Jung, Jong-Chan Lee, Pil Joon Seo
{"title":"高温诱导的FKF1积累通过GI的分散和SVP的降解促进开花。","authors":"Hong Gil Lee, Jinkwang Kim, Kyung-Ho Park, Hongwoo Lee, Sol-Bi Kim, Ji-Yul Jung, Eunha Gwak, Ji Hoon Ahn, Jae-Hoon Jung, Jong-Chan Lee, Pil Joon Seo","doi":"10.1038/s41477-025-02019-4","DOIUrl":null,"url":null,"abstract":"Floral transition is influenced by photoperiod and ambient temperature, which are integrated to modulate development via a molecular mechanism that remains to be elucidated. Here we demonstrate that the F-box protein FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and its interacting partner GIGANTEA (GI), central regulators of photoperiodic flowering, target SHORT VEGETATIVE PHASE (SVP) for 26S-proteasome-dependent degradation to regulate the temperature-responsive developmental transition to flowering. At low temperatures, GI is sequestered in liquid-like nuclear condensates. By contrast, FKF1 accumulates at high temperatures and releases GI from condensates to form a nuclear-dispersed FKF1–GI complex, leading to SVP degradation under short-day conditions. Temperature sensitivity is significantly reduced in fkf1-t, gi-2 and fkf1-2 gi-2 mutants. We propose that the FKF1–GI complex mediates the proteolysis of a floral repressor via reversible liquid–liquid phase separation to accelerate floral transition at high temperatures. GI forms an inactive nuclear condensate that is dispersed at high temperatures by FKF1 binding to GI’s intrinsically disordered region. The resulting FKF1–GI complex promotes SVP degradation, accelerating flowering at high ambient temperatures.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 7","pages":"1282-1297"},"PeriodicalIF":13.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-temperature-induced FKF1 accumulation promotes flowering through the dispersion of GI and degradation of SVP\",\"authors\":\"Hong Gil Lee, Jinkwang Kim, Kyung-Ho Park, Hongwoo Lee, Sol-Bi Kim, Ji-Yul Jung, Eunha Gwak, Ji Hoon Ahn, Jae-Hoon Jung, Jong-Chan Lee, Pil Joon Seo\",\"doi\":\"10.1038/s41477-025-02019-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floral transition is influenced by photoperiod and ambient temperature, which are integrated to modulate development via a molecular mechanism that remains to be elucidated. Here we demonstrate that the F-box protein FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and its interacting partner GIGANTEA (GI), central regulators of photoperiodic flowering, target SHORT VEGETATIVE PHASE (SVP) for 26S-proteasome-dependent degradation to regulate the temperature-responsive developmental transition to flowering. At low temperatures, GI is sequestered in liquid-like nuclear condensates. By contrast, FKF1 accumulates at high temperatures and releases GI from condensates to form a nuclear-dispersed FKF1–GI complex, leading to SVP degradation under short-day conditions. Temperature sensitivity is significantly reduced in fkf1-t, gi-2 and fkf1-2 gi-2 mutants. We propose that the FKF1–GI complex mediates the proteolysis of a floral repressor via reversible liquid–liquid phase separation to accelerate floral transition at high temperatures. GI forms an inactive nuclear condensate that is dispersed at high temperatures by FKF1 binding to GI’s intrinsically disordered region. The resulting FKF1–GI complex promotes SVP degradation, accelerating flowering at high ambient temperatures.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"11 7\",\"pages\":\"1282-1297\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41477-025-02019-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-025-02019-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
High-temperature-induced FKF1 accumulation promotes flowering through the dispersion of GI and degradation of SVP
Floral transition is influenced by photoperiod and ambient temperature, which are integrated to modulate development via a molecular mechanism that remains to be elucidated. Here we demonstrate that the F-box protein FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and its interacting partner GIGANTEA (GI), central regulators of photoperiodic flowering, target SHORT VEGETATIVE PHASE (SVP) for 26S-proteasome-dependent degradation to regulate the temperature-responsive developmental transition to flowering. At low temperatures, GI is sequestered in liquid-like nuclear condensates. By contrast, FKF1 accumulates at high temperatures and releases GI from condensates to form a nuclear-dispersed FKF1–GI complex, leading to SVP degradation under short-day conditions. Temperature sensitivity is significantly reduced in fkf1-t, gi-2 and fkf1-2 gi-2 mutants. We propose that the FKF1–GI complex mediates the proteolysis of a floral repressor via reversible liquid–liquid phase separation to accelerate floral transition at high temperatures. GI forms an inactive nuclear condensate that is dispersed at high temperatures by FKF1 binding to GI’s intrinsically disordered region. The resulting FKF1–GI complex promotes SVP degradation, accelerating flowering at high ambient temperatures.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.