遮荫胁迫下大豆代谢再分配改变了苯丙素谱,对胁迫适应和种子组成有影响。

IF 4.8 2区 生物学 Q1 PLANT SCIENCES
Wenting Qin, Juncai Deng, Jingya Guo, Wenyu Yang, Jiang Liu
{"title":"遮荫胁迫下大豆代谢再分配改变了苯丙素谱,对胁迫适应和种子组成有影响。","authors":"Wenting Qin, Juncai Deng, Jingya Guo, Wenyu Yang, Jiang Liu","doi":"10.1186/s12870-025-06893-0","DOIUrl":null,"url":null,"abstract":"<p><p>Shade stress induces significant metabolic reallocation in soybeans, altering both nutritional composition and adaptation strategies to low-light environments. Using Partial Least Squares Discriminant Analysis (PLS-DA) of the shade-sensitive variety C103, we identified 19 differential metabolites (Variable Importance in Projection, VIP > 1; p < 0.05), including 9 upregulated metabolites-such as essential amino acids-that may enhance protein quality under shade. Conversely, 10 metabolites, primarily key flavonoids like daidzein and genistin, were downregulated, indicating potential compromises in antioxidant capacity and stress resilience. Shade stress markedly reshaped the phenylpropanoid pathway, particularly affecting the biosynthesis of isoflavones, anthocyanins, and lignin. Shade-tolerant varieties displayed elevated isoflavone and anthocyanin accumulation while moderating lignin synthesis, reflecting a strategic focus on metabolites with adaptive and health-promoting functions. In contrast, shade-sensitive varieties prioritized lignin production at the expense of isoflavones, potentially reducing their nutritional and functional value. Organ-specific responses were evident: in C103 seedlings, roots maintained sustained isoflavone accumulation under moderate shade (Red/Far-Red ratio, R/FR = 0.7), while leaves showed a decline with prolonged exposure. These results highlight a metabolic trade-off between defense investment and energy conservation in different tissues. Overall, this study underscores the pivotal role of metabolic reallocation-especially within the phenylpropanoid pathway-in mediating soybean shade adaptation and nutritional traits. By integrating metabolomic profiling with pathway analysis, our findings offer new insights for breeding and management strategies to enhance soybean performance and sustainability under low-light conditions.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"870"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232139/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolic reallocation in soybeans under shade stress alters phenylpropanoid profiles with implications for stress adaptation and seed composition.\",\"authors\":\"Wenting Qin, Juncai Deng, Jingya Guo, Wenyu Yang, Jiang Liu\",\"doi\":\"10.1186/s12870-025-06893-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shade stress induces significant metabolic reallocation in soybeans, altering both nutritional composition and adaptation strategies to low-light environments. Using Partial Least Squares Discriminant Analysis (PLS-DA) of the shade-sensitive variety C103, we identified 19 differential metabolites (Variable Importance in Projection, VIP > 1; p < 0.05), including 9 upregulated metabolites-such as essential amino acids-that may enhance protein quality under shade. Conversely, 10 metabolites, primarily key flavonoids like daidzein and genistin, were downregulated, indicating potential compromises in antioxidant capacity and stress resilience. Shade stress markedly reshaped the phenylpropanoid pathway, particularly affecting the biosynthesis of isoflavones, anthocyanins, and lignin. Shade-tolerant varieties displayed elevated isoflavone and anthocyanin accumulation while moderating lignin synthesis, reflecting a strategic focus on metabolites with adaptive and health-promoting functions. In contrast, shade-sensitive varieties prioritized lignin production at the expense of isoflavones, potentially reducing their nutritional and functional value. Organ-specific responses were evident: in C103 seedlings, roots maintained sustained isoflavone accumulation under moderate shade (Red/Far-Red ratio, R/FR = 0.7), while leaves showed a decline with prolonged exposure. These results highlight a metabolic trade-off between defense investment and energy conservation in different tissues. Overall, this study underscores the pivotal role of metabolic reallocation-especially within the phenylpropanoid pathway-in mediating soybean shade adaptation and nutritional traits. By integrating metabolomic profiling with pathway analysis, our findings offer new insights for breeding and management strategies to enhance soybean performance and sustainability under low-light conditions.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"25 1\",\"pages\":\"870\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232139/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-025-06893-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06893-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

遮荫胁迫诱导大豆显著的代谢再分配,改变了营养成分和对低光环境的适应策略。利用偏最小二乘判别分析(PLS-DA)对遮荫敏感品种C103进行鉴定,鉴定出19种差异代谢物(投影变量重要性,VIP >1;p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolic reallocation in soybeans under shade stress alters phenylpropanoid profiles with implications for stress adaptation and seed composition.

Shade stress induces significant metabolic reallocation in soybeans, altering both nutritional composition and adaptation strategies to low-light environments. Using Partial Least Squares Discriminant Analysis (PLS-DA) of the shade-sensitive variety C103, we identified 19 differential metabolites (Variable Importance in Projection, VIP > 1; p < 0.05), including 9 upregulated metabolites-such as essential amino acids-that may enhance protein quality under shade. Conversely, 10 metabolites, primarily key flavonoids like daidzein and genistin, were downregulated, indicating potential compromises in antioxidant capacity and stress resilience. Shade stress markedly reshaped the phenylpropanoid pathway, particularly affecting the biosynthesis of isoflavones, anthocyanins, and lignin. Shade-tolerant varieties displayed elevated isoflavone and anthocyanin accumulation while moderating lignin synthesis, reflecting a strategic focus on metabolites with adaptive and health-promoting functions. In contrast, shade-sensitive varieties prioritized lignin production at the expense of isoflavones, potentially reducing their nutritional and functional value. Organ-specific responses were evident: in C103 seedlings, roots maintained sustained isoflavone accumulation under moderate shade (Red/Far-Red ratio, R/FR = 0.7), while leaves showed a decline with prolonged exposure. These results highlight a metabolic trade-off between defense investment and energy conservation in different tissues. Overall, this study underscores the pivotal role of metabolic reallocation-especially within the phenylpropanoid pathway-in mediating soybean shade adaptation and nutritional traits. By integrating metabolomic profiling with pathway analysis, our findings offer new insights for breeding and management strategies to enhance soybean performance and sustainability under low-light conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信