微接触印刷(μCP)的(亚)微尺度图案:最新进展、应用和未来展望。

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-07-04 DOI:10.1039/d5sm00355e
Martin Reifarth
{"title":"微接触印刷(μCP)的(亚)微尺度图案:最新进展、应用和未来展望。","authors":"Martin Reifarth","doi":"10.1039/d5sm00355e","DOIUrl":null,"url":null,"abstract":"<p><p>Microcontact printing (μCP) is a versatile and low-cost technique for surface patterning, allowing for the fabrication of intricate designs with relative ease. However, despite these clear advantages, the application of μCP has predominantly focused on smooth, uniform surfaces, while rough, capillary-active, or hydrogel surfaces have largely been neglected in existing literature. This article aims to review the latest advances in μCP, tracing the evolution of patterning techniques and highlighting recent applications across various fields. Our discussion will encompass both fundamental developments in technology and practical implementations that illustrate its potential. In the last section, we will address the question why non-smooth surfaces have gathered less interest and aim to propose strategies for overcoming the inherent challenges they pose. With this contribution, we will also provide a perspective by shifting our focus to the specific challenges posed by capillary-active surfaces. We will introduce the innovative concept of polymer brush-supported μCP (PolyBrushMiC), which could serve as a promising strategy to address these challenges. By incorporating polymer brushes, we can enhance the compatibility of μCP with rough surfaces, enabling more effective pattern transfer and improved stability of printed features.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Sub-)microscale patterning <i>via</i> microcontact printing (μCP): recent advances, applications and future perspectives.\",\"authors\":\"Martin Reifarth\",\"doi\":\"10.1039/d5sm00355e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microcontact printing (μCP) is a versatile and low-cost technique for surface patterning, allowing for the fabrication of intricate designs with relative ease. However, despite these clear advantages, the application of μCP has predominantly focused on smooth, uniform surfaces, while rough, capillary-active, or hydrogel surfaces have largely been neglected in existing literature. This article aims to review the latest advances in μCP, tracing the evolution of patterning techniques and highlighting recent applications across various fields. Our discussion will encompass both fundamental developments in technology and practical implementations that illustrate its potential. In the last section, we will address the question why non-smooth surfaces have gathered less interest and aim to propose strategies for overcoming the inherent challenges they pose. With this contribution, we will also provide a perspective by shifting our focus to the specific challenges posed by capillary-active surfaces. We will introduce the innovative concept of polymer brush-supported μCP (PolyBrushMiC), which could serve as a promising strategy to address these challenges. By incorporating polymer brushes, we can enhance the compatibility of μCP with rough surfaces, enabling more effective pattern transfer and improved stability of printed features.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sm00355e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00355e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

微接触印刷(μCP)是一种多功能和低成本的表面图案技术,可以相对容易地制造复杂的设计。然而,尽管有这些明显的优势,μCP的应用主要集中在光滑、均匀的表面上,而粗糙、毛细血管活性或水凝胶表面在现有文献中很大程度上被忽视。本文旨在回顾μCP的最新进展,追踪图案化技术的演变,并重点介绍在各个领域的最新应用。我们的讨论将包括技术的基本发展和说明其潜力的实际实现。在最后一节中,我们将讨论为什么非光滑表面引起的兴趣较少,并旨在提出克服它们所带来的固有挑战的策略。有了这一贡献,我们也将提供一个视角,将我们的注意力转移到毛细血管活性表面带来的具体挑战上。我们将介绍聚合物刷负载μCP (PolyBrushMiC)的创新概念,这可能是解决这些挑战的一个有希望的策略。通过加入聚合物刷,我们可以增强μCP与粗糙表面的兼容性,实现更有效的图案转移和提高打印特征的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(Sub-)microscale patterning via microcontact printing (μCP): recent advances, applications and future perspectives.

Microcontact printing (μCP) is a versatile and low-cost technique for surface patterning, allowing for the fabrication of intricate designs with relative ease. However, despite these clear advantages, the application of μCP has predominantly focused on smooth, uniform surfaces, while rough, capillary-active, or hydrogel surfaces have largely been neglected in existing literature. This article aims to review the latest advances in μCP, tracing the evolution of patterning techniques and highlighting recent applications across various fields. Our discussion will encompass both fundamental developments in technology and practical implementations that illustrate its potential. In the last section, we will address the question why non-smooth surfaces have gathered less interest and aim to propose strategies for overcoming the inherent challenges they pose. With this contribution, we will also provide a perspective by shifting our focus to the specific challenges posed by capillary-active surfaces. We will introduce the innovative concept of polymer brush-supported μCP (PolyBrushMiC), which could serve as a promising strategy to address these challenges. By incorporating polymer brushes, we can enhance the compatibility of μCP with rough surfaces, enabling more effective pattern transfer and improved stability of printed features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信