{"title":"乳腺癌术中放疗中使用x线片进行剂量测定的观察性验证研究","authors":"Yu-Yun Kao , Jen-Yang Tang , Wen-Hsi Cheng","doi":"10.1016/j.apradiso.2025.112028","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Intraoperative radiotherapy (IORT) for breast cancer offers a promising alternative to conventional external beam radiotherapy by delivering high-dose radiation directly to the tumor bed during surgery. However, accurate dosimetry is critical to ensure the safety and efficacy of this procedure. This study aimed to develop and validate a reliable dosimetry using GAFchromic EBT-3 films for precise <em>in vivo</em> and <em>in vitro</em> dosimetry during IORT. The primary objective was to verify the accuracy of absorbed delivered doses during IORT using GAFchromic EBT-3 films, in comparison with that of Monte Carlo simulations.</div></div><div><h3>Methods</h3><div>This observational study included 38 patients with breast cancer who underwent IORT at Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Chung-Ho Memorial Hospital in Taiwan. Patients were selected based on predefined inclusion criteria. Using GAFchromic EBT-3 films during IORT, absorbed doses, including the applicator surface, excision wound, and surrounding breast tissue, were measured at various critical points. Monte Carlo simulations were conducted to validate the accuracy of these manufacturer-provided data.</div></div><div><h3>Results</h3><div>The mean measured dose was 20.37 ± 0.67 Gy, which had a 1.2 % discrepancy from the planned dose of 20 Gy. Dose measurements at other surrounding tissues indicated effective protection, with mean doses of 1.36 ± 0.92 Gy on the excision wound and 1.08 ± 1.18 Gy on the surrounding breast edge. Monte Carlo simulations confirmed a high level of consistency with the manufacturer's data, with an error margin of <3 %.</div></div><div><h3>Conclusions</h3><div>The use of GAFchromic EBT-3 films for dosimetry during IORT was feasible and reliable and provided an independent verification method to ensure accurate dose delivery. This study demonstrates that accurate dosimetric validation supports the clinical optimization of intraoperative radiotherapy (IORT), enabling precise dose delivery while reducing exposure to surrounding healthy tissues. These findings may contribute to enhanced treatment safety, improved local control, and favorable cosmetic outcomes in breast-conserving therapy. Further research is warranted to refine this technique and explore its applicability in other radiotherapy contexts.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"225 ","pages":"Article 112028"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational validation study of dosimetry using radiographic films in breast cancer intraoperative radiotherapy\",\"authors\":\"Yu-Yun Kao , Jen-Yang Tang , Wen-Hsi Cheng\",\"doi\":\"10.1016/j.apradiso.2025.112028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><div>Intraoperative radiotherapy (IORT) for breast cancer offers a promising alternative to conventional external beam radiotherapy by delivering high-dose radiation directly to the tumor bed during surgery. However, accurate dosimetry is critical to ensure the safety and efficacy of this procedure. This study aimed to develop and validate a reliable dosimetry using GAFchromic EBT-3 films for precise <em>in vivo</em> and <em>in vitro</em> dosimetry during IORT. The primary objective was to verify the accuracy of absorbed delivered doses during IORT using GAFchromic EBT-3 films, in comparison with that of Monte Carlo simulations.</div></div><div><h3>Methods</h3><div>This observational study included 38 patients with breast cancer who underwent IORT at Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Chung-Ho Memorial Hospital in Taiwan. Patients were selected based on predefined inclusion criteria. Using GAFchromic EBT-3 films during IORT, absorbed doses, including the applicator surface, excision wound, and surrounding breast tissue, were measured at various critical points. Monte Carlo simulations were conducted to validate the accuracy of these manufacturer-provided data.</div></div><div><h3>Results</h3><div>The mean measured dose was 20.37 ± 0.67 Gy, which had a 1.2 % discrepancy from the planned dose of 20 Gy. Dose measurements at other surrounding tissues indicated effective protection, with mean doses of 1.36 ± 0.92 Gy on the excision wound and 1.08 ± 1.18 Gy on the surrounding breast edge. Monte Carlo simulations confirmed a high level of consistency with the manufacturer's data, with an error margin of <3 %.</div></div><div><h3>Conclusions</h3><div>The use of GAFchromic EBT-3 films for dosimetry during IORT was feasible and reliable and provided an independent verification method to ensure accurate dose delivery. This study demonstrates that accurate dosimetric validation supports the clinical optimization of intraoperative radiotherapy (IORT), enabling precise dose delivery while reducing exposure to surrounding healthy tissues. These findings may contribute to enhanced treatment safety, improved local control, and favorable cosmetic outcomes in breast-conserving therapy. Further research is warranted to refine this technique and explore its applicability in other radiotherapy contexts.</div></div>\",\"PeriodicalId\":8096,\"journal\":{\"name\":\"Applied Radiation and Isotopes\",\"volume\":\"225 \",\"pages\":\"Article 112028\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Radiation and Isotopes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969804325003732\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804325003732","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Observational validation study of dosimetry using radiographic films in breast cancer intraoperative radiotherapy
Background and purpose
Intraoperative radiotherapy (IORT) for breast cancer offers a promising alternative to conventional external beam radiotherapy by delivering high-dose radiation directly to the tumor bed during surgery. However, accurate dosimetry is critical to ensure the safety and efficacy of this procedure. This study aimed to develop and validate a reliable dosimetry using GAFchromic EBT-3 films for precise in vivo and in vitro dosimetry during IORT. The primary objective was to verify the accuracy of absorbed delivered doses during IORT using GAFchromic EBT-3 films, in comparison with that of Monte Carlo simulations.
Methods
This observational study included 38 patients with breast cancer who underwent IORT at Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Chung-Ho Memorial Hospital in Taiwan. Patients were selected based on predefined inclusion criteria. Using GAFchromic EBT-3 films during IORT, absorbed doses, including the applicator surface, excision wound, and surrounding breast tissue, were measured at various critical points. Monte Carlo simulations were conducted to validate the accuracy of these manufacturer-provided data.
Results
The mean measured dose was 20.37 ± 0.67 Gy, which had a 1.2 % discrepancy from the planned dose of 20 Gy. Dose measurements at other surrounding tissues indicated effective protection, with mean doses of 1.36 ± 0.92 Gy on the excision wound and 1.08 ± 1.18 Gy on the surrounding breast edge. Monte Carlo simulations confirmed a high level of consistency with the manufacturer's data, with an error margin of <3 %.
Conclusions
The use of GAFchromic EBT-3 films for dosimetry during IORT was feasible and reliable and provided an independent verification method to ensure accurate dose delivery. This study demonstrates that accurate dosimetric validation supports the clinical optimization of intraoperative radiotherapy (IORT), enabling precise dose delivery while reducing exposure to surrounding healthy tissues. These findings may contribute to enhanced treatment safety, improved local control, and favorable cosmetic outcomes in breast-conserving therapy. Further research is warranted to refine this technique and explore its applicability in other radiotherapy contexts.
期刊介绍:
Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria.
Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.