{"title":"工业4.0中的可穿戴传感器:预防与工作相关的肌肉骨骼疾病","authors":"Morteza Jalali Alenjareghi, Firdaous Sekkay, Camelia Dadouchi, Samira Keivanpour","doi":"10.1016/j.sintl.2025.100343","DOIUrl":null,"url":null,"abstract":"<div><div>Work-related musculoskeletal disorders (WMSDs) are a global health and economic challenge, particularly in industrialized nations, accounting for up to 2 % of GDP losses due to disability and productivity reduction. Wearable sensors, driven by Industry 4.0 advancements, offer transformative potential for real-time ergonomic assessment and injury prevention. This systematic review analyzes 40 peer-reviewed studies (2013–2024) to evaluate the application of inertial measurement units (IMUs), electromyography (EMG) sensors, and pressure sensors in mitigating WMSD risks. Findings demonstrate that wearable technologies enhance workplace safety through real-time feedback, reducing ergonomic risks and improving productivity. Despite promising advancements, challenges such as scalability, user comfort, and data privacy persist. This review emphasizes the need for standardized protocols, ethical frameworks, and deeper integration with machine learning to optimize sensor accuracy and usability. Future research directions include advancing AI-driven predictive ergonomics, addressing privacy concerns, and improving sensor design for widespread industrial adoption. This study provides actionable insights to bridge the gap between academic research and practical deployment in diverse industrial settings.</div></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"7 ","pages":"Article 100343"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wearable sensors in Industry 4.0: Preventing work-related musculoskeletal disorders\",\"authors\":\"Morteza Jalali Alenjareghi, Firdaous Sekkay, Camelia Dadouchi, Samira Keivanpour\",\"doi\":\"10.1016/j.sintl.2025.100343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Work-related musculoskeletal disorders (WMSDs) are a global health and economic challenge, particularly in industrialized nations, accounting for up to 2 % of GDP losses due to disability and productivity reduction. Wearable sensors, driven by Industry 4.0 advancements, offer transformative potential for real-time ergonomic assessment and injury prevention. This systematic review analyzes 40 peer-reviewed studies (2013–2024) to evaluate the application of inertial measurement units (IMUs), electromyography (EMG) sensors, and pressure sensors in mitigating WMSD risks. Findings demonstrate that wearable technologies enhance workplace safety through real-time feedback, reducing ergonomic risks and improving productivity. Despite promising advancements, challenges such as scalability, user comfort, and data privacy persist. This review emphasizes the need for standardized protocols, ethical frameworks, and deeper integration with machine learning to optimize sensor accuracy and usability. Future research directions include advancing AI-driven predictive ergonomics, addressing privacy concerns, and improving sensor design for widespread industrial adoption. This study provides actionable insights to bridge the gap between academic research and practical deployment in diverse industrial settings.</div></div>\",\"PeriodicalId\":21733,\"journal\":{\"name\":\"Sensors International\",\"volume\":\"7 \",\"pages\":\"Article 100343\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266635112500018X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266635112500018X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wearable sensors in Industry 4.0: Preventing work-related musculoskeletal disorders
Work-related musculoskeletal disorders (WMSDs) are a global health and economic challenge, particularly in industrialized nations, accounting for up to 2 % of GDP losses due to disability and productivity reduction. Wearable sensors, driven by Industry 4.0 advancements, offer transformative potential for real-time ergonomic assessment and injury prevention. This systematic review analyzes 40 peer-reviewed studies (2013–2024) to evaluate the application of inertial measurement units (IMUs), electromyography (EMG) sensors, and pressure sensors in mitigating WMSD risks. Findings demonstrate that wearable technologies enhance workplace safety through real-time feedback, reducing ergonomic risks and improving productivity. Despite promising advancements, challenges such as scalability, user comfort, and data privacy persist. This review emphasizes the need for standardized protocols, ethical frameworks, and deeper integration with machine learning to optimize sensor accuracy and usability. Future research directions include advancing AI-driven predictive ergonomics, addressing privacy concerns, and improving sensor design for widespread industrial adoption. This study provides actionable insights to bridge the gap between academic research and practical deployment in diverse industrial settings.