Chukwuemeka Daniel , Shouye Cheng , Xin Yin , Zakaria Mohamed Barrie , Yucong Pan , Quansheng Liu , Feng Gao , Minsheng Li , Xing Huang
{"title":"人工智能辅助地下工程岩爆破坏规模短期决策","authors":"Chukwuemeka Daniel , Shouye Cheng , Xin Yin , Zakaria Mohamed Barrie , Yucong Pan , Quansheng Liu , Feng Gao , Minsheng Li , Xing Huang","doi":"10.1016/j.undsp.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>Rockbursts pose severe risks to underground engineering projects, including mining and tunnelling, where sudden rock failures can lead to substantial infrastructure damage and loss of human lives. An accurate assessment of rockburst damage is essential for safety and effective risk mitigation. This study investigates the effectiveness of ensemble machine learning models optimized through Bayesian optimization (BO) in predicting rockburst damage scales. Nine classifier algorithms, including random forest (RF), were evaluated using a dataset of 254 samples. The research considered factors such as stress conditions, support system capacity, excavation span, geological characteristics, seismic magnitude, peak particle velocity, and rock density as input variables. The rockburst damage scale, categorized into four severity levels based on displaced rock mass, served as the target variable. Among the models evaluated, BO-RF model demonstrated the highest predictive accuracy and generalization capability, achieving 92% testing accuracy. BO-RF model also ranked top in a multi-criteria evaluation framework. This devised ranking system underscores the importance of evaluating model performance on both training and unseen testing data to ensure robust generalization. The findings underscore the effectiveness of BO-RF in enhancing rockburst risk assessment and providing reliable predictive insights for underground engineering applications.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"23 ","pages":"Pages 362-378"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-aided short-term decision making of rockburst damage scale in underground engineering\",\"authors\":\"Chukwuemeka Daniel , Shouye Cheng , Xin Yin , Zakaria Mohamed Barrie , Yucong Pan , Quansheng Liu , Feng Gao , Minsheng Li , Xing Huang\",\"doi\":\"10.1016/j.undsp.2025.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rockbursts pose severe risks to underground engineering projects, including mining and tunnelling, where sudden rock failures can lead to substantial infrastructure damage and loss of human lives. An accurate assessment of rockburst damage is essential for safety and effective risk mitigation. This study investigates the effectiveness of ensemble machine learning models optimized through Bayesian optimization (BO) in predicting rockburst damage scales. Nine classifier algorithms, including random forest (RF), were evaluated using a dataset of 254 samples. The research considered factors such as stress conditions, support system capacity, excavation span, geological characteristics, seismic magnitude, peak particle velocity, and rock density as input variables. The rockburst damage scale, categorized into four severity levels based on displaced rock mass, served as the target variable. Among the models evaluated, BO-RF model demonstrated the highest predictive accuracy and generalization capability, achieving 92% testing accuracy. BO-RF model also ranked top in a multi-criteria evaluation framework. This devised ranking system underscores the importance of evaluating model performance on both training and unseen testing data to ensure robust generalization. The findings underscore the effectiveness of BO-RF in enhancing rockburst risk assessment and providing reliable predictive insights for underground engineering applications.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"23 \",\"pages\":\"Pages 362-378\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967425000418\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967425000418","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
AI-aided short-term decision making of rockburst damage scale in underground engineering
Rockbursts pose severe risks to underground engineering projects, including mining and tunnelling, where sudden rock failures can lead to substantial infrastructure damage and loss of human lives. An accurate assessment of rockburst damage is essential for safety and effective risk mitigation. This study investigates the effectiveness of ensemble machine learning models optimized through Bayesian optimization (BO) in predicting rockburst damage scales. Nine classifier algorithms, including random forest (RF), were evaluated using a dataset of 254 samples. The research considered factors such as stress conditions, support system capacity, excavation span, geological characteristics, seismic magnitude, peak particle velocity, and rock density as input variables. The rockburst damage scale, categorized into four severity levels based on displaced rock mass, served as the target variable. Among the models evaluated, BO-RF model demonstrated the highest predictive accuracy and generalization capability, achieving 92% testing accuracy. BO-RF model also ranked top in a multi-criteria evaluation framework. This devised ranking system underscores the importance of evaluating model performance on both training and unseen testing data to ensure robust generalization. The findings underscore the effectiveness of BO-RF in enhancing rockburst risk assessment and providing reliable predictive insights for underground engineering applications.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.