基于机器学习的晴空气溶胶直接辐射强迫多传感器卫星观测估计

IF 3.4 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Lu Zhang, Jing Li, Yueming Dong, Tong Ying, Zhenyu Zhang, Guanyu Liu, Chongzhao Zhang
{"title":"基于机器学习的晴空气溶胶直接辐射强迫多传感器卫星观测估计","authors":"Lu Zhang,&nbsp;Jing Li,&nbsp;Yueming Dong,&nbsp;Tong Ying,&nbsp;Zhenyu Zhang,&nbsp;Guanyu Liu,&nbsp;Chongzhao Zhang","doi":"10.1029/2024JD043170","DOIUrl":null,"url":null,"abstract":"<p>Aerosol forcing remains highly uncertain in climate change assessment. Observation-based forcing estimates have been typically given more weight as they do not rely on assumptions and parameterizations in models. Traditional estimation of direct aerosol radiative forcing (DARF) based on observation is realized by regressing the observed radiative fluxes against aerosol optical depth (AOD). Here we improve this procedure by considering more aerosol parameters such as single scattering albedo (SSA) and adopting a machine learning-based method (eXtreme Gradient Boosting (XGBoost)) to establish the relationship between top-of-atmosphere (TOA) radiative fluxes and aerosol properties. Our approach gives a global mean DARF of −0.80 ± 0.73 W/m<sup>2</sup> under clear sky, which largely agrees with previously reported results. The DARF uncertainty includes the impact of measurement errors and the XGBoost model, in which AOD and SSA uncertainties cause ∼0.66 and ∼0.14 W/m<sup>2</sup> changes in the DARF respectively.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Estimation of Clear-Sky Direct Aerosol Radiative Forcing Using Multisensor Satellite Observations\",\"authors\":\"Lu Zhang,&nbsp;Jing Li,&nbsp;Yueming Dong,&nbsp;Tong Ying,&nbsp;Zhenyu Zhang,&nbsp;Guanyu Liu,&nbsp;Chongzhao Zhang\",\"doi\":\"10.1029/2024JD043170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aerosol forcing remains highly uncertain in climate change assessment. Observation-based forcing estimates have been typically given more weight as they do not rely on assumptions and parameterizations in models. Traditional estimation of direct aerosol radiative forcing (DARF) based on observation is realized by regressing the observed radiative fluxes against aerosol optical depth (AOD). Here we improve this procedure by considering more aerosol parameters such as single scattering albedo (SSA) and adopting a machine learning-based method (eXtreme Gradient Boosting (XGBoost)) to establish the relationship between top-of-atmosphere (TOA) radiative fluxes and aerosol properties. Our approach gives a global mean DARF of −0.80 ± 0.73 W/m<sup>2</sup> under clear sky, which largely agrees with previously reported results. The DARF uncertainty includes the impact of measurement errors and the XGBoost model, in which AOD and SSA uncertainties cause ∼0.66 and ∼0.14 W/m<sup>2</sup> changes in the DARF respectively.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"130 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD043170\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD043170","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在气候变化评估中,气溶胶强迫仍然高度不确定。基于观测的强迫估计通常被赋予更大的权重,因为它们不依赖于模式中的假设和参数化。传统的基于观测的气溶胶直接辐射强迫(DARF)估算是通过将观测到的辐射通量与气溶胶光学深度(AOD)回归来实现的。本文通过考虑单散射反照率(SSA)等气溶胶参数,并采用基于机器学习的极端梯度增强(XGBoost)方法建立大气顶(TOA)辐射通量与气溶胶特性之间的关系,对这一过程进行了改进。我们的方法给出了晴空下全球平均DARF为- 0.80±0.73 W/m2,这与之前报道的结果基本一致。DARF不确定度包括测量误差和XGBoost模型的影响,其中AOD和SSA不确定度分别导致DARF变化~ 0.66和~ 0.14 W/m2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based Estimation of Clear-Sky Direct Aerosol Radiative Forcing Using Multisensor Satellite Observations

Aerosol forcing remains highly uncertain in climate change assessment. Observation-based forcing estimates have been typically given more weight as they do not rely on assumptions and parameterizations in models. Traditional estimation of direct aerosol radiative forcing (DARF) based on observation is realized by regressing the observed radiative fluxes against aerosol optical depth (AOD). Here we improve this procedure by considering more aerosol parameters such as single scattering albedo (SSA) and adopting a machine learning-based method (eXtreme Gradient Boosting (XGBoost)) to establish the relationship between top-of-atmosphere (TOA) radiative fluxes and aerosol properties. Our approach gives a global mean DARF of −0.80 ± 0.73 W/m2 under clear sky, which largely agrees with previously reported results. The DARF uncertainty includes the impact of measurement errors and the XGBoost model, in which AOD and SSA uncertainties cause ∼0.66 and ∼0.14 W/m2 changes in the DARF respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信