采用混合隧道机制的电子-空穴双层tfet生物传感器具有高的关断电流和通断电流比灵敏度

IF 3 Q2 PHYSICS, CONDENSED MATTER
Hu Liu , Lei Pan , Yifan Lei , Yuzhe Song , Peifeng Li , Yubin Li , Pengyu Wang
{"title":"采用混合隧道机制的电子-空穴双层tfet生物传感器具有高的关断电流和通断电流比灵敏度","authors":"Hu Liu ,&nbsp;Lei Pan ,&nbsp;Yifan Lei ,&nbsp;Yuzhe Song ,&nbsp;Peifeng Li ,&nbsp;Yubin Li ,&nbsp;Pengyu Wang","doi":"10.1016/j.micrna.2025.208266","DOIUrl":null,"url":null,"abstract":"<div><div>To facilitate the injection of biomolecules and device integration, we design a novel vertical biosensor based on an electron-hole bilayer tunnel field-effect transistor. This biosensor utilizes the off-state point tunneling current for biomolecules detection, which makes its off-state current sensitivity (<em>S</em><sub>Ioff</sub>) independent of gate voltage, contributing to reduced power consumption. Its on-state current depends on the line tunneling between the electron-hole bilayer, allowing higher on-off current ratio sensitivity (<em>S</em><sub>Ion/Ioff</sub>) under low bias conditions. Investigations reveal enhanced sensitivity toward negatively charged biomolecules with high dielectric and charge density. Furthermore, optimal <em>S</em><sub>Ioff</sub> and <em>S</em><sub>Ion/Ioff</sub> are achieved when the bio-cavity width equals 4 nm. Investigations demonstrate that superior sensing performance can be obtained when probes with a high filling rate are concentrated on the right side of the bio-cavity, and the biomolecule filling rate significantly affects the detection ability of high-<em>k</em> biomolecules. Numerical calculations demonstrate that the proposed biosensor exhibits exceptional <em>S</em><sub>Ioff</sub> (∼10<sup>13</sup>) and <em>S</em><sub>Ion/Ioff</sub> (∼10<sup>12</sup>) at 0.5 V, significantly advancing the application potential of TFET-based biosensors in low-power fields.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208266"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron-hole bilayer TFET-based biosensor using hybrid tunneling mechanism for high off-state current and on-off current ratio sensitivities\",\"authors\":\"Hu Liu ,&nbsp;Lei Pan ,&nbsp;Yifan Lei ,&nbsp;Yuzhe Song ,&nbsp;Peifeng Li ,&nbsp;Yubin Li ,&nbsp;Pengyu Wang\",\"doi\":\"10.1016/j.micrna.2025.208266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To facilitate the injection of biomolecules and device integration, we design a novel vertical biosensor based on an electron-hole bilayer tunnel field-effect transistor. This biosensor utilizes the off-state point tunneling current for biomolecules detection, which makes its off-state current sensitivity (<em>S</em><sub>Ioff</sub>) independent of gate voltage, contributing to reduced power consumption. Its on-state current depends on the line tunneling between the electron-hole bilayer, allowing higher on-off current ratio sensitivity (<em>S</em><sub>Ion/Ioff</sub>) under low bias conditions. Investigations reveal enhanced sensitivity toward negatively charged biomolecules with high dielectric and charge density. Furthermore, optimal <em>S</em><sub>Ioff</sub> and <em>S</em><sub>Ion/Ioff</sub> are achieved when the bio-cavity width equals 4 nm. Investigations demonstrate that superior sensing performance can be obtained when probes with a high filling rate are concentrated on the right side of the bio-cavity, and the biomolecule filling rate significantly affects the detection ability of high-<em>k</em> biomolecules. Numerical calculations demonstrate that the proposed biosensor exhibits exceptional <em>S</em><sub>Ioff</sub> (∼10<sup>13</sup>) and <em>S</em><sub>Ion/Ioff</sub> (∼10<sup>12</sup>) at 0.5 V, significantly advancing the application potential of TFET-based biosensors in low-power fields.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"207 \",\"pages\":\"Article 208266\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325001955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

为了方便生物分子的注射和器件集成,我们设计了一种基于电子-空穴双层隧道场效应晶体管的新型垂直生物传感器。该生物传感器利用离态点隧道电流进行生物分子检测,这使得其离态电流灵敏度(SIoff)与栅极电压无关,有助于降低功耗。它的导通电流依赖于电子-空穴双层之间的线隧穿,在低偏置条件下允许更高的通断电流比灵敏度(SIon/Ioff)。研究表明,对具有高介电和电荷密度的带负电生物分子的敏感性增强。此外,当生物腔宽度为4 nm时,可获得最佳的SIoff和SIon/Ioff。研究表明,当高填充率的探针集中在生物腔的右侧时,可以获得优异的传感性能,并且生物分子填充率显著影响高k生物分子的检测能力。数值计算表明,所提出的生物传感器在0.5 V下表现出优异的SIoff(~ 1013)和SIon/Ioff(~ 1012),显著提高了基于tfet的生物传感器在低功率领域的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electron-hole bilayer TFET-based biosensor using hybrid tunneling mechanism for high off-state current and on-off current ratio sensitivities
To facilitate the injection of biomolecules and device integration, we design a novel vertical biosensor based on an electron-hole bilayer tunnel field-effect transistor. This biosensor utilizes the off-state point tunneling current for biomolecules detection, which makes its off-state current sensitivity (SIoff) independent of gate voltage, contributing to reduced power consumption. Its on-state current depends on the line tunneling between the electron-hole bilayer, allowing higher on-off current ratio sensitivity (SIon/Ioff) under low bias conditions. Investigations reveal enhanced sensitivity toward negatively charged biomolecules with high dielectric and charge density. Furthermore, optimal SIoff and SIon/Ioff are achieved when the bio-cavity width equals 4 nm. Investigations demonstrate that superior sensing performance can be obtained when probes with a high filling rate are concentrated on the right side of the bio-cavity, and the biomolecule filling rate significantly affects the detection ability of high-k biomolecules. Numerical calculations demonstrate that the proposed biosensor exhibits exceptional SIoff (∼1013) and SIon/Ioff (∼1012) at 0.5 V, significantly advancing the application potential of TFET-based biosensors in low-power fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信