求解分数阶Cahn-Allen方程及等宽方程的修正齐次平衡法

Q1 Mathematics
Francis Tuffour, Benedict Barnes, Isaac Kwame Dontwi, Kwaku Forkuoh Darkwah
{"title":"求解分数阶Cahn-Allen方程及等宽方程的修正齐次平衡法","authors":"Francis Tuffour,&nbsp;Benedict Barnes,&nbsp;Isaac Kwame Dontwi,&nbsp;Kwaku Forkuoh Darkwah","doi":"10.1016/j.padiff.2025.101246","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents exact solutions to the Fractional Cahn–Allen (FC–A) and the Fractional Equal Width (FEW) equations using the Modified Homogeneous Balance Method (MHBM). The MHBM transforms the FC–A and FEW equations into fractional ordinary differential equations via a wave transformation. By balancing the highest-order derivative with the leading nonlinear term, the method determines the appropriate polynomial degree. A fractional Riccati equation with a quadratic nonlinearity facilitates the construction of exact solutions without resorting to infinite series expansions. Compared to existing methods, the MHBM offers a finite and well-defined solution structure, avoiding the rigidity of the <span><math><mrow><mo>tan</mo><mfenced><mrow><mfrac><mrow><mi>ξ</mi><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>-expansion method and the complexities associated with the Riemann–Hilbert and algebro–geometric methods. It also provides clearer criteria for convergence analysis than the <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-expansion method. The MHBM accommodates various solution types, including trigonometric, hyperbolic, rational, and elliptic functions, with fewer parameter restrictions and potential for multi-wave structures. Numerical simulations shows that as the spatial variable <span><math><mi>x</mi></math></span> increases, the solitons tend to stabilize, and the plots for different values of the fractional order <span><math><mi>α</mi></math></span> closely aligned, indicating minor sensitivity to <span><math><mi>α</mi></math></span>. Furthermore, the FEW soliton exhibits a dense tiling structure along the time axis in its surface plot, while the FC–A soliton demonstrates a smooth kink-like transition along <span><math><mi>ξ</mi></math></span>, characteristic of solutions connecting two stable equilibrium states. These findings underscore the robustness and versatility of the MHBM in analyzing fractional nonlinear evolution equations.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101246"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Modified Homogeneous Balance Method for solving fractional Cahn–Allen and equal width equations\",\"authors\":\"Francis Tuffour,&nbsp;Benedict Barnes,&nbsp;Isaac Kwame Dontwi,&nbsp;Kwaku Forkuoh Darkwah\",\"doi\":\"10.1016/j.padiff.2025.101246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents exact solutions to the Fractional Cahn–Allen (FC–A) and the Fractional Equal Width (FEW) equations using the Modified Homogeneous Balance Method (MHBM). The MHBM transforms the FC–A and FEW equations into fractional ordinary differential equations via a wave transformation. By balancing the highest-order derivative with the leading nonlinear term, the method determines the appropriate polynomial degree. A fractional Riccati equation with a quadratic nonlinearity facilitates the construction of exact solutions without resorting to infinite series expansions. Compared to existing methods, the MHBM offers a finite and well-defined solution structure, avoiding the rigidity of the <span><math><mrow><mo>tan</mo><mfenced><mrow><mfrac><mrow><mi>ξ</mi><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>-expansion method and the complexities associated with the Riemann–Hilbert and algebro–geometric methods. It also provides clearer criteria for convergence analysis than the <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>-expansion method. The MHBM accommodates various solution types, including trigonometric, hyperbolic, rational, and elliptic functions, with fewer parameter restrictions and potential for multi-wave structures. Numerical simulations shows that as the spatial variable <span><math><mi>x</mi></math></span> increases, the solitons tend to stabilize, and the plots for different values of the fractional order <span><math><mi>α</mi></math></span> closely aligned, indicating minor sensitivity to <span><math><mi>α</mi></math></span>. Furthermore, the FEW soliton exhibits a dense tiling structure along the time axis in its surface plot, while the FC–A soliton demonstrates a smooth kink-like transition along <span><math><mi>ξ</mi></math></span>, characteristic of solutions connecting two stable equilibrium states. These findings underscore the robustness and versatility of the MHBM in analyzing fractional nonlinear evolution equations.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文用改进齐次平衡法给出了分数阶Cahn-Allen方程(FC-A)和分数阶等宽方程(FEW)的精确解。MHBM通过波变换将FC-A和FEW方程转化为分数阶常微分方程。该方法通过平衡最高阶导数与前导非线性项,确定合适的多项式次。具有二次非线性的分数阶里卡蒂方程便于构造精确解而不需要无穷级数展开。与现有方法相比,MHBM提供了有限且定义良好的解结构,避免了tanξ(η)2展开方法的刚性和黎曼-希尔伯特和代数-几何方法的复杂性。它还为收敛分析提供了比ϕ6展开法更清晰的准则。MHBM适用于各种解类型,包括三角函数、双曲函数、有理函数和椭圆函数,具有更少的参数限制和多波结构的潜力。数值模拟表明,随着空间变量x的增大,孤子趋于稳定,不同分数阶α值的图排列紧密,表明孤子对α的敏感性较小。此外,在其表面图中,FEW孤子沿时间轴呈现致密的平铺结构,而FC-A孤子沿ξ呈现光滑的扭结状跃迁,这是连接两个稳定平衡态的解的特征。这些发现强调了MHBM在分析分数阶非线性演化方程中的鲁棒性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Modified Homogeneous Balance Method for solving fractional Cahn–Allen and equal width equations
This paper presents exact solutions to the Fractional Cahn–Allen (FC–A) and the Fractional Equal Width (FEW) equations using the Modified Homogeneous Balance Method (MHBM). The MHBM transforms the FC–A and FEW equations into fractional ordinary differential equations via a wave transformation. By balancing the highest-order derivative with the leading nonlinear term, the method determines the appropriate polynomial degree. A fractional Riccati equation with a quadratic nonlinearity facilitates the construction of exact solutions without resorting to infinite series expansions. Compared to existing methods, the MHBM offers a finite and well-defined solution structure, avoiding the rigidity of the tanξ(η)2-expansion method and the complexities associated with the Riemann–Hilbert and algebro–geometric methods. It also provides clearer criteria for convergence analysis than the ϕ6-expansion method. The MHBM accommodates various solution types, including trigonometric, hyperbolic, rational, and elliptic functions, with fewer parameter restrictions and potential for multi-wave structures. Numerical simulations shows that as the spatial variable x increases, the solitons tend to stabilize, and the plots for different values of the fractional order α closely aligned, indicating minor sensitivity to α. Furthermore, the FEW soliton exhibits a dense tiling structure along the time axis in its surface plot, while the FC–A soliton demonstrates a smooth kink-like transition along ξ, characteristic of solutions connecting two stable equilibrium states. These findings underscore the robustness and versatility of the MHBM in analyzing fractional nonlinear evolution equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信