N.S. Menger , B. Kotchoubey , K. Ohla , Y.G. Pavlov
{"title":"错过了近在眼前的东西:人类的食欲和厌恶听觉嗅觉调节失败。","authors":"N.S. Menger , B. Kotchoubey , K. Ohla , Y.G. Pavlov","doi":"10.1016/j.ijpsycho.2025.113205","DOIUrl":null,"url":null,"abstract":"<div><div>The comparison of physiological mechanisms underlying appetitive and aversive conditioning is often challenging due to the involvement of stimuli from different modalities with potentially disparate effective mechanisms (e.g., pain stimuli versus monetary rewards). The olfactory system offers a unique opportunity to examine both types of conditioning in humans, as isointense odors can serve as comparably pleasant and unpleasant stimuli. To study physiological and behavioral responses during appetitive and aversive learning, we employed odors as unconditioned stimuli (US) in a within-subjects design, measuring various conditioned physiological responses including skin conductance, heart rate, pulse wave amplitude, respiration, fear-potentiated startle, postauricular reflex, facial electromyography, as well as event-related potentials and auditory steady-state responses (ASSR) derived from electroencephalography. We conducted four experiments with a total of 95 participants, presenting three neutral sounds paired with either a pleasant odor, an unpleasant odor, or odorless air. The first experiment involved uninstructed participants and frequency-modulated conditioned stimuli (CS) for ASSR analysis. In the second experiment, we omitted the frequency modulation and startle probe. The third experiment included pre-experiment instruction on CS-US contingencies, while the fourth employed a delay conditioning paradigm in contrast to the other three experiments. Our results revealed differences between CS+ and CS- only in the fear-potentiated startle response in Experiment 3. No other effects were found. The minimal or absent learning effects observed across multiple peripheral and neural physiological measures may be attributed to the extra-thalamic nature of olfactory pathways and the subsequent difficulty in forming associations with auditory stimuli.</div></div>","PeriodicalId":54945,"journal":{"name":"International Journal of Psychophysiology","volume":"215 ","pages":"Article 113205"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missing what's right under your nose: Failed appetitive and aversive audio-olfactory conditioning in humans\",\"authors\":\"N.S. Menger , B. Kotchoubey , K. Ohla , Y.G. Pavlov\",\"doi\":\"10.1016/j.ijpsycho.2025.113205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The comparison of physiological mechanisms underlying appetitive and aversive conditioning is often challenging due to the involvement of stimuli from different modalities with potentially disparate effective mechanisms (e.g., pain stimuli versus monetary rewards). The olfactory system offers a unique opportunity to examine both types of conditioning in humans, as isointense odors can serve as comparably pleasant and unpleasant stimuli. To study physiological and behavioral responses during appetitive and aversive learning, we employed odors as unconditioned stimuli (US) in a within-subjects design, measuring various conditioned physiological responses including skin conductance, heart rate, pulse wave amplitude, respiration, fear-potentiated startle, postauricular reflex, facial electromyography, as well as event-related potentials and auditory steady-state responses (ASSR) derived from electroencephalography. We conducted four experiments with a total of 95 participants, presenting three neutral sounds paired with either a pleasant odor, an unpleasant odor, or odorless air. The first experiment involved uninstructed participants and frequency-modulated conditioned stimuli (CS) for ASSR analysis. In the second experiment, we omitted the frequency modulation and startle probe. The third experiment included pre-experiment instruction on CS-US contingencies, while the fourth employed a delay conditioning paradigm in contrast to the other three experiments. Our results revealed differences between CS+ and CS- only in the fear-potentiated startle response in Experiment 3. No other effects were found. The minimal or absent learning effects observed across multiple peripheral and neural physiological measures may be attributed to the extra-thalamic nature of olfactory pathways and the subsequent difficulty in forming associations with auditory stimuli.</div></div>\",\"PeriodicalId\":54945,\"journal\":{\"name\":\"International Journal of Psychophysiology\",\"volume\":\"215 \",\"pages\":\"Article 113205\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167876025007019\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167876025007019","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Missing what's right under your nose: Failed appetitive and aversive audio-olfactory conditioning in humans
The comparison of physiological mechanisms underlying appetitive and aversive conditioning is often challenging due to the involvement of stimuli from different modalities with potentially disparate effective mechanisms (e.g., pain stimuli versus monetary rewards). The olfactory system offers a unique opportunity to examine both types of conditioning in humans, as isointense odors can serve as comparably pleasant and unpleasant stimuli. To study physiological and behavioral responses during appetitive and aversive learning, we employed odors as unconditioned stimuli (US) in a within-subjects design, measuring various conditioned physiological responses including skin conductance, heart rate, pulse wave amplitude, respiration, fear-potentiated startle, postauricular reflex, facial electromyography, as well as event-related potentials and auditory steady-state responses (ASSR) derived from electroencephalography. We conducted four experiments with a total of 95 participants, presenting three neutral sounds paired with either a pleasant odor, an unpleasant odor, or odorless air. The first experiment involved uninstructed participants and frequency-modulated conditioned stimuli (CS) for ASSR analysis. In the second experiment, we omitted the frequency modulation and startle probe. The third experiment included pre-experiment instruction on CS-US contingencies, while the fourth employed a delay conditioning paradigm in contrast to the other three experiments. Our results revealed differences between CS+ and CS- only in the fear-potentiated startle response in Experiment 3. No other effects were found. The minimal or absent learning effects observed across multiple peripheral and neural physiological measures may be attributed to the extra-thalamic nature of olfactory pathways and the subsequent difficulty in forming associations with auditory stimuli.
期刊介绍:
The International Journal of Psychophysiology is the official journal of the International Organization of Psychophysiology, and provides a respected forum for the publication of high quality original contributions on all aspects of psychophysiology. The journal is interdisciplinary and aims to integrate the neurosciences and behavioral sciences. Empirical, theoretical, and review articles are encouraged in the following areas:
• Cerebral psychophysiology: including functional brain mapping and neuroimaging with Event-Related Potentials (ERPs), Positron Emission Tomography (PET), Functional Magnetic Resonance Imaging (fMRI) and Electroencephalographic studies.
• Autonomic functions: including bilateral electrodermal activity, pupillometry and blood volume changes.
• Cardiovascular Psychophysiology:including studies of blood pressure, cardiac functioning and respiration.
• Somatic psychophysiology: including muscle activity, eye movements and eye blinks.