Lan Wen, Jon A Steingrimsson, Sarah E Robertson, Issa J Dahabreh
{"title":"平均治疗效果与失效时间结果的多源分析。","authors":"Lan Wen, Jon A Steingrimsson, Sarah E Robertson, Issa J Dahabreh","doi":"10.1007/s10985-025-09663-0","DOIUrl":null,"url":null,"abstract":"<p><p>Analyses of multi-source data, such as data from multi-center randomized trials, individual participant data meta-analyses, or pooled analyses of observational studies, combine information to estimate an overall average treatment effect. However, if average treatment effects vary across data sources, commonly used approaches for multi-source analyses may not have a clear causal interpretation with respect to a target population of interest. In this paper, we provide identification and estimation of average treatment effects in a target population underlying one of the data sources in a point treatment setting for failure time outcomes potentially subject to right-censoring. We do not assume the absence of effect heterogeneity and hence our results are valid, under certain assumptions, when average treatment effects vary across data sources. We derive the efficient influence functions for source-specific average treatment effects using multi-source data under two different sets of assumptions, and propose a novel doubly robust estimator for our estimand. We evaluate the finite-sample performance of our estimator in simulation studies, and apply our methods to data from the HALT-C multi-center trials.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-source analyses of average treatment effects with failure time outcomes.\",\"authors\":\"Lan Wen, Jon A Steingrimsson, Sarah E Robertson, Issa J Dahabreh\",\"doi\":\"10.1007/s10985-025-09663-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analyses of multi-source data, such as data from multi-center randomized trials, individual participant data meta-analyses, or pooled analyses of observational studies, combine information to estimate an overall average treatment effect. However, if average treatment effects vary across data sources, commonly used approaches for multi-source analyses may not have a clear causal interpretation with respect to a target population of interest. In this paper, we provide identification and estimation of average treatment effects in a target population underlying one of the data sources in a point treatment setting for failure time outcomes potentially subject to right-censoring. We do not assume the absence of effect heterogeneity and hence our results are valid, under certain assumptions, when average treatment effects vary across data sources. We derive the efficient influence functions for source-specific average treatment effects using multi-source data under two different sets of assumptions, and propose a novel doubly robust estimator for our estimand. We evaluate the finite-sample performance of our estimator in simulation studies, and apply our methods to data from the HALT-C multi-center trials.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-025-09663-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09663-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multi-source analyses of average treatment effects with failure time outcomes.
Analyses of multi-source data, such as data from multi-center randomized trials, individual participant data meta-analyses, or pooled analyses of observational studies, combine information to estimate an overall average treatment effect. However, if average treatment effects vary across data sources, commonly used approaches for multi-source analyses may not have a clear causal interpretation with respect to a target population of interest. In this paper, we provide identification and estimation of average treatment effects in a target population underlying one of the data sources in a point treatment setting for failure time outcomes potentially subject to right-censoring. We do not assume the absence of effect heterogeneity and hence our results are valid, under certain assumptions, when average treatment effects vary across data sources. We derive the efficient influence functions for source-specific average treatment effects using multi-source data under two different sets of assumptions, and propose a novel doubly robust estimator for our estimand. We evaluate the finite-sample performance of our estimator in simulation studies, and apply our methods to data from the HALT-C multi-center trials.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.