{"title":"通过瞬态氢键矩阵的量子磁化交换定义了中枢神经系统的磁共振信号弛豫和各向异性。","authors":"Dmitriy A Yablonskiy, Alexander L Sukstanskii","doi":"10.1038/s41598-025-07808-7","DOIUrl":null,"url":null,"abstract":"<p><p>The integrity of cellular membranes (lipid bilayers) and myelin sheaths covering axons is a crucial feature controlling normal brain structural and functional networks. Yet, in vivo evaluation of this integrity at the nanoscale level of the cellular membranes organization is challenging. Herein we explore the dual property of biological water in Central Nervous System (CNS), as one of the major stabilizing factors of cellular membranes, and the major source of MRI signal. We introduce the Basic Transient Hydrogen Bond (THB) model of the MR signal relaxation due to the quantum spin/magnetization exchanges within the THB Matrix encompassing water molecules and membrane-forming macromolecules. Our data show the existence of two THB Matrix components with distinct lifetimes - one in a few nano-second range, and another in the range of tens nanoseconds. Importantly, the former component facilitates longitudinal relaxation of MR signal, the latter contributes to its transverse relaxation and causes the anisotropy of MR signal relaxation. These distinct features offer opportunity to study nanoscale level microstructure of cellular membranes. Furthermore, the ability to differentiate distinct THB Matrix components based on their MR signal relaxation properties can be fundamental to identifying pathological changes and enhancing disease visibility on MRI scans.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"23834"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229511/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantum magnetization exchange through transient hydrogen bond matrix defines magnetic resonance signal relaxation and anisotropy in central nervous system.\",\"authors\":\"Dmitriy A Yablonskiy, Alexander L Sukstanskii\",\"doi\":\"10.1038/s41598-025-07808-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integrity of cellular membranes (lipid bilayers) and myelin sheaths covering axons is a crucial feature controlling normal brain structural and functional networks. Yet, in vivo evaluation of this integrity at the nanoscale level of the cellular membranes organization is challenging. Herein we explore the dual property of biological water in Central Nervous System (CNS), as one of the major stabilizing factors of cellular membranes, and the major source of MRI signal. We introduce the Basic Transient Hydrogen Bond (THB) model of the MR signal relaxation due to the quantum spin/magnetization exchanges within the THB Matrix encompassing water molecules and membrane-forming macromolecules. Our data show the existence of two THB Matrix components with distinct lifetimes - one in a few nano-second range, and another in the range of tens nanoseconds. Importantly, the former component facilitates longitudinal relaxation of MR signal, the latter contributes to its transverse relaxation and causes the anisotropy of MR signal relaxation. These distinct features offer opportunity to study nanoscale level microstructure of cellular membranes. Furthermore, the ability to differentiate distinct THB Matrix components based on their MR signal relaxation properties can be fundamental to identifying pathological changes and enhancing disease visibility on MRI scans.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"23834\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229511/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-07808-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07808-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Quantum magnetization exchange through transient hydrogen bond matrix defines magnetic resonance signal relaxation and anisotropy in central nervous system.
The integrity of cellular membranes (lipid bilayers) and myelin sheaths covering axons is a crucial feature controlling normal brain structural and functional networks. Yet, in vivo evaluation of this integrity at the nanoscale level of the cellular membranes organization is challenging. Herein we explore the dual property of biological water in Central Nervous System (CNS), as one of the major stabilizing factors of cellular membranes, and the major source of MRI signal. We introduce the Basic Transient Hydrogen Bond (THB) model of the MR signal relaxation due to the quantum spin/magnetization exchanges within the THB Matrix encompassing water molecules and membrane-forming macromolecules. Our data show the existence of two THB Matrix components with distinct lifetimes - one in a few nano-second range, and another in the range of tens nanoseconds. Importantly, the former component facilitates longitudinal relaxation of MR signal, the latter contributes to its transverse relaxation and causes the anisotropy of MR signal relaxation. These distinct features offer opportunity to study nanoscale level microstructure of cellular membranes. Furthermore, the ability to differentiate distinct THB Matrix components based on their MR signal relaxation properties can be fundamental to identifying pathological changes and enhancing disease visibility on MRI scans.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.