{"title":"肾超声诊断尿路扩张的神经网络分类比较:与专家分类的一致性评价。","authors":"Kee Chung, Shaoju Wu, Chow Jeanne, Andy Tsai","doi":"10.1007/s00247-025-06311-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Urinary tract dilation (UTD) is a frequent problem in infants. Automated and objective classification of UTD from renal ultrasounds would streamline their interpretations.</p><p><strong>Objective: </strong>To develop and evaluate the performance of different deep learning models in predicting UTD classifications from renal ultrasound images.</p><p><strong>Materials and methods: </strong>We searched our image archive to identify renal ultrasounds performed in infants ≤ 3-months-old for the clinical indications of prenatal UTD and urinary tract infection (9/2023-8/2024). An expert pediatric uroradiologist provided the ground truth UTD labels for representative sagittal sonographic renal images. Three different deep learning models trained with cross-entropy loss were adapted with four-fold cross-validation experiments to determine the overall performance.</p><p><strong>Results: </strong>Our curated database included 492 right and 487 left renal ultrasounds (mean age ± standard deviation = 1.2 ± 0.1 months for both cohorts, with 341 boys/151 girls and 339 boys/148 girls, respectively). The model prediction accuracies for the right and left kidneys were 88.7% (95% confidence interval [CI], [85.8%, 91.5%]) and 80.5% (95% CI, [77.6%, 82.9%]), with weighted kappa scores of 0.90 (95% CI, [0.88, 0.91]) and 0.87 (95% CI, [0.82, 0.92]), respectively. When predictions were binarized into mild (normal/P1) and severe (UTD P2/P3) dilation, accuracies of the right and left kidneys increased to 96.3% (95% CI, [94.9%, 97.8%]) and 91.3% (95% CI, [88.5%, 94.2%]), but agreements decreased to 0.78 (95% CI, [0.73, 0.82]) and 0.75 (95% CI, [0.68, 0.82]), respectively.</p><p><strong>Conclusion: </strong>Deep learning models demonstrated high accuracy and agreement in classifying UTD from infant renal ultrasounds, supporting their potential as decision-support tools in clinical workflows.</p>","PeriodicalId":19755,"journal":{"name":"Pediatric Radiology","volume":" ","pages":"1846-1856"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of neural networks for classification of urinary tract dilation from renal ultrasounds: evaluation of agreement with expert categorization.\",\"authors\":\"Kee Chung, Shaoju Wu, Chow Jeanne, Andy Tsai\",\"doi\":\"10.1007/s00247-025-06311-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Urinary tract dilation (UTD) is a frequent problem in infants. Automated and objective classification of UTD from renal ultrasounds would streamline their interpretations.</p><p><strong>Objective: </strong>To develop and evaluate the performance of different deep learning models in predicting UTD classifications from renal ultrasound images.</p><p><strong>Materials and methods: </strong>We searched our image archive to identify renal ultrasounds performed in infants ≤ 3-months-old for the clinical indications of prenatal UTD and urinary tract infection (9/2023-8/2024). An expert pediatric uroradiologist provided the ground truth UTD labels for representative sagittal sonographic renal images. Three different deep learning models trained with cross-entropy loss were adapted with four-fold cross-validation experiments to determine the overall performance.</p><p><strong>Results: </strong>Our curated database included 492 right and 487 left renal ultrasounds (mean age ± standard deviation = 1.2 ± 0.1 months for both cohorts, with 341 boys/151 girls and 339 boys/148 girls, respectively). The model prediction accuracies for the right and left kidneys were 88.7% (95% confidence interval [CI], [85.8%, 91.5%]) and 80.5% (95% CI, [77.6%, 82.9%]), with weighted kappa scores of 0.90 (95% CI, [0.88, 0.91]) and 0.87 (95% CI, [0.82, 0.92]), respectively. When predictions were binarized into mild (normal/P1) and severe (UTD P2/P3) dilation, accuracies of the right and left kidneys increased to 96.3% (95% CI, [94.9%, 97.8%]) and 91.3% (95% CI, [88.5%, 94.2%]), but agreements decreased to 0.78 (95% CI, [0.73, 0.82]) and 0.75 (95% CI, [0.68, 0.82]), respectively.</p><p><strong>Conclusion: </strong>Deep learning models demonstrated high accuracy and agreement in classifying UTD from infant renal ultrasounds, supporting their potential as decision-support tools in clinical workflows.</p>\",\"PeriodicalId\":19755,\"journal\":{\"name\":\"Pediatric Radiology\",\"volume\":\" \",\"pages\":\"1846-1856\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pediatric Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00247-025-06311-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00247-025-06311-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
Comparison of neural networks for classification of urinary tract dilation from renal ultrasounds: evaluation of agreement with expert categorization.
Background: Urinary tract dilation (UTD) is a frequent problem in infants. Automated and objective classification of UTD from renal ultrasounds would streamline their interpretations.
Objective: To develop and evaluate the performance of different deep learning models in predicting UTD classifications from renal ultrasound images.
Materials and methods: We searched our image archive to identify renal ultrasounds performed in infants ≤ 3-months-old for the clinical indications of prenatal UTD and urinary tract infection (9/2023-8/2024). An expert pediatric uroradiologist provided the ground truth UTD labels for representative sagittal sonographic renal images. Three different deep learning models trained with cross-entropy loss were adapted with four-fold cross-validation experiments to determine the overall performance.
Results: Our curated database included 492 right and 487 left renal ultrasounds (mean age ± standard deviation = 1.2 ± 0.1 months for both cohorts, with 341 boys/151 girls and 339 boys/148 girls, respectively). The model prediction accuracies for the right and left kidneys were 88.7% (95% confidence interval [CI], [85.8%, 91.5%]) and 80.5% (95% CI, [77.6%, 82.9%]), with weighted kappa scores of 0.90 (95% CI, [0.88, 0.91]) and 0.87 (95% CI, [0.82, 0.92]), respectively. When predictions were binarized into mild (normal/P1) and severe (UTD P2/P3) dilation, accuracies of the right and left kidneys increased to 96.3% (95% CI, [94.9%, 97.8%]) and 91.3% (95% CI, [88.5%, 94.2%]), but agreements decreased to 0.78 (95% CI, [0.73, 0.82]) and 0.75 (95% CI, [0.68, 0.82]), respectively.
Conclusion: Deep learning models demonstrated high accuracy and agreement in classifying UTD from infant renal ultrasounds, supporting their potential as decision-support tools in clinical workflows.
期刊介绍:
Official Journal of the European Society of Pediatric Radiology, the Society for Pediatric Radiology and the Asian and Oceanic Society for Pediatric Radiology
Pediatric Radiology informs its readers of new findings and progress in all areas of pediatric imaging and in related fields. This is achieved by a blend of original papers, complemented by reviews that set out the present state of knowledge in a particular area of the specialty or summarize specific topics in which discussion has led to clear conclusions. Advances in technology, methodology, apparatus and auxiliary equipment are presented, and modifications of standard techniques are described.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.