{"title":"自一致的硬度测量跨越十一十年应变率在单一材料表面。","authors":"Luciano Borasi, Christopher A Schuh","doi":"10.1038/s41467-025-61445-2","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive understanding of material strength across strain rates typically requires the combination of results from different methods, which often vary in loading conditions and/or sampled volumes, leading to discrepancies in material behavior. This study presents a microindentation approach to measure hardness covering eleven orders of magnitude in strain rate, from quasi-static to phonon drag-dominated rates, on a single material surface under uniform testing conditions. By engineering the geometry of impactors used in laser induced particle impact testing, we extend the breadth of accessible strain rates, including multiple distinct rates exceeding 10⁵ s⁻¹. This self-consistent approach provides clearer insights into high-rate deformation mechanisms. Our results demonstrate a gradual increase in hardness with strain rate from quasi-static up to ultra-high rates, where a sharp upturn in hardness is observed.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6148"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229530/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-consistent hardness measurements spanning eleven decades of strain rate on a single material surface.\",\"authors\":\"Luciano Borasi, Christopher A Schuh\",\"doi\":\"10.1038/s41467-025-61445-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A comprehensive understanding of material strength across strain rates typically requires the combination of results from different methods, which often vary in loading conditions and/or sampled volumes, leading to discrepancies in material behavior. This study presents a microindentation approach to measure hardness covering eleven orders of magnitude in strain rate, from quasi-static to phonon drag-dominated rates, on a single material surface under uniform testing conditions. By engineering the geometry of impactors used in laser induced particle impact testing, we extend the breadth of accessible strain rates, including multiple distinct rates exceeding 10⁵ s⁻¹. This self-consistent approach provides clearer insights into high-rate deformation mechanisms. Our results demonstrate a gradual increase in hardness with strain rate from quasi-static up to ultra-high rates, where a sharp upturn in hardness is observed.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"6148\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61445-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61445-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Self-consistent hardness measurements spanning eleven decades of strain rate on a single material surface.
A comprehensive understanding of material strength across strain rates typically requires the combination of results from different methods, which often vary in loading conditions and/or sampled volumes, leading to discrepancies in material behavior. This study presents a microindentation approach to measure hardness covering eleven orders of magnitude in strain rate, from quasi-static to phonon drag-dominated rates, on a single material surface under uniform testing conditions. By engineering the geometry of impactors used in laser induced particle impact testing, we extend the breadth of accessible strain rates, including multiple distinct rates exceeding 10⁵ s⁻¹. This self-consistent approach provides clearer insights into high-rate deformation mechanisms. Our results demonstrate a gradual increase in hardness with strain rate from quasi-static up to ultra-high rates, where a sharp upturn in hardness is observed.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.