发现单亚基寡糖转移酶,使全长IgG抗体在细菌中糖基化。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Belen Sotomayor, Thomas C Donahue, Sai Pooja Mahajan, May N Taw, Sophia W Hulbert, Erik J Bidstrup, D Natasha Owitipana, Alexandra Pang, Xu Yang, Souvik Ghosal, Christopher A Alabi, Parastoo Azadi, Jeffrey J Gray, Michael C Jewett, Lai-Xi Wang, Matthew P DeLisa
{"title":"发现单亚基寡糖转移酶,使全长IgG抗体在细菌中糖基化。","authors":"Belen Sotomayor, Thomas C Donahue, Sai Pooja Mahajan, May N Taw, Sophia W Hulbert, Erik J Bidstrup, D Natasha Owitipana, Alexandra Pang, Xu Yang, Souvik Ghosal, Christopher A Alabi, Parastoo Azadi, Jeffrey J Gray, Michael C Jewett, Lai-Xi Wang, Matthew P DeLisa","doi":"10.1038/s41467-025-61440-7","DOIUrl":null,"url":null,"abstract":"<p><p>Human immunoglobulin G (IgG) antibodies are a major class of biotherapeutics and undergo N-linked glycosylation in their Fc domain, which is critical for immune functions and therapeutic activity. Hence, technologies for producing authentically glycosylated IgGs are in high demand. Previous attempts to engineer Escherichia coli for this purpose have met limited success due in part to the lack of oligosaccharyltransferase (OST) enzymes that can install N-glycans at the conserved N297 site in the Fc region. Here, we identify a single-subunit OST from Desulfovibrio marinus with relaxed substrate specificity that catalyzes glycosylation of native Fc acceptor sites. By chemoenzymatic remodeling the attached bacterial glycans to homogeneous, asialo complex-type G2 N-glycans, the E. coli-derived Fc binds human FcγRIIIa/CD16a, a key receptor for antibody-dependent cellular cytotoxicity (ADCC). Overall, the discovery of D. marinus OST provides previously unavailable biocatalytic capabilities and sets the stage for using E. coli to produce fully human antibodies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6152"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229607/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of a single-subunit oligosaccharyltransferase that enables glycosylation of full-length IgG antibodies in bacteria.\",\"authors\":\"Belen Sotomayor, Thomas C Donahue, Sai Pooja Mahajan, May N Taw, Sophia W Hulbert, Erik J Bidstrup, D Natasha Owitipana, Alexandra Pang, Xu Yang, Souvik Ghosal, Christopher A Alabi, Parastoo Azadi, Jeffrey J Gray, Michael C Jewett, Lai-Xi Wang, Matthew P DeLisa\",\"doi\":\"10.1038/s41467-025-61440-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human immunoglobulin G (IgG) antibodies are a major class of biotherapeutics and undergo N-linked glycosylation in their Fc domain, which is critical for immune functions and therapeutic activity. Hence, technologies for producing authentically glycosylated IgGs are in high demand. Previous attempts to engineer Escherichia coli for this purpose have met limited success due in part to the lack of oligosaccharyltransferase (OST) enzymes that can install N-glycans at the conserved N297 site in the Fc region. Here, we identify a single-subunit OST from Desulfovibrio marinus with relaxed substrate specificity that catalyzes glycosylation of native Fc acceptor sites. By chemoenzymatic remodeling the attached bacterial glycans to homogeneous, asialo complex-type G2 N-glycans, the E. coli-derived Fc binds human FcγRIIIa/CD16a, a key receptor for antibody-dependent cellular cytotoxicity (ADCC). Overall, the discovery of D. marinus OST provides previously unavailable biocatalytic capabilities and sets the stage for using E. coli to produce fully human antibodies.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"6152\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229607/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61440-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61440-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人免疫球蛋白G (IgG)抗体是一类主要的生物治疗药物,其Fc结构域发生n -链糖基化,这对免疫功能和治疗活性至关重要。因此,生产真正的糖基化igg的技术需求量很大。由于缺乏能够在Fc区保守的N297位点上安装n -聚糖的寡糖转移酶(OST)酶,先前针对这一目的设计大肠杆菌的尝试取得了有限的成功。在这里,我们从海洋Desulfovibrio marinus中鉴定出一种单亚基OST,它具有轻松的底物特异性,可以催化天然Fc受体位点的糖基化。大肠杆菌衍生的Fc通过化学酶重塑附着的细菌聚糖到同质的、asialo复合物型G2 n -聚糖上,与人Fcγ riiia /CD16a结合,后者是抗体依赖性细胞毒性(antibody-dependent cellular cytotoxicity, ADCC)的关键受体。总之,D. marinus OST的发现提供了以前无法获得的生物催化能力,并为利用大肠杆菌生产完全人类抗体奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of a single-subunit oligosaccharyltransferase that enables glycosylation of full-length IgG antibodies in bacteria.

Human immunoglobulin G (IgG) antibodies are a major class of biotherapeutics and undergo N-linked glycosylation in their Fc domain, which is critical for immune functions and therapeutic activity. Hence, technologies for producing authentically glycosylated IgGs are in high demand. Previous attempts to engineer Escherichia coli for this purpose have met limited success due in part to the lack of oligosaccharyltransferase (OST) enzymes that can install N-glycans at the conserved N297 site in the Fc region. Here, we identify a single-subunit OST from Desulfovibrio marinus with relaxed substrate specificity that catalyzes glycosylation of native Fc acceptor sites. By chemoenzymatic remodeling the attached bacterial glycans to homogeneous, asialo complex-type G2 N-glycans, the E. coli-derived Fc binds human FcγRIIIa/CD16a, a key receptor for antibody-dependent cellular cytotoxicity (ADCC). Overall, the discovery of D. marinus OST provides previously unavailable biocatalytic capabilities and sets the stage for using E. coli to produce fully human antibodies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信