{"title":"成纤维细胞衍生的CSF1维持肠道粘膜巨噬细胞的定植以抵抗细菌感染。","authors":"Daichi Nonaka, Soichiro Yoshida, Kenta Nakano, Xiaojun Li, Tadashi Okamura, Eiji Umemoto, Taisho Yamada, Miyuki Watanabe, Shozo Jinno, Minako Ito, Makoto Tsuda, Naoto Noguchi, Jean X Jiang, Eriko Sumiya, Shinichiro Sawa","doi":"10.1016/j.mucimm.2025.06.011","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages play essential roles in immune defense and tissue homeostasis, but the mechanisms underlying their colonization in the gut mucosa remain incompletely understood. Here, we identify CSF1, primarily derived from fibroblasts, as the dominant factor maintaining mucosal macrophage colonization, whereas IL-34 deficiency alone has a minimal impact. We reveal that CSF1R ligands originate from distinct cellular sources: macrophages at the upper villus region depend on fibroblast-derived CSF1 and IL-34, while macrophages in the lower villus and the submucosal (lower villus + SM) region are regulated by CSF1 from both fibroblasts and endothelial cells. Additionally, within the lower villus + SM region, CSF1-producing CD81<sup>+</sup> LepR<sup>+</sup> fibroblasts directly interact with CD163<sup>+</sup> macrophages, forming a localized niche. The loss of CSF1 in fibroblasts results in accelerated systemic dissemination of Salmonella Typhimurium, highlighting fibroblast-derived CSF1 as a key regulator of gut macrophage function in host defense. Collectively, our findings uncover a previously unrecognized fibroblast-macrophage crosstalk that governs gut macrophage homeostasis and immunity.</p>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibroblast-derived CSF1 maintains colonization of gut mucosal macrophage to resist bacterial infection.\",\"authors\":\"Daichi Nonaka, Soichiro Yoshida, Kenta Nakano, Xiaojun Li, Tadashi Okamura, Eiji Umemoto, Taisho Yamada, Miyuki Watanabe, Shozo Jinno, Minako Ito, Makoto Tsuda, Naoto Noguchi, Jean X Jiang, Eriko Sumiya, Shinichiro Sawa\",\"doi\":\"10.1016/j.mucimm.2025.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages play essential roles in immune defense and tissue homeostasis, but the mechanisms underlying their colonization in the gut mucosa remain incompletely understood. Here, we identify CSF1, primarily derived from fibroblasts, as the dominant factor maintaining mucosal macrophage colonization, whereas IL-34 deficiency alone has a minimal impact. We reveal that CSF1R ligands originate from distinct cellular sources: macrophages at the upper villus region depend on fibroblast-derived CSF1 and IL-34, while macrophages in the lower villus and the submucosal (lower villus + SM) region are regulated by CSF1 from both fibroblasts and endothelial cells. Additionally, within the lower villus + SM region, CSF1-producing CD81<sup>+</sup> LepR<sup>+</sup> fibroblasts directly interact with CD163<sup>+</sup> macrophages, forming a localized niche. The loss of CSF1 in fibroblasts results in accelerated systemic dissemination of Salmonella Typhimurium, highlighting fibroblast-derived CSF1 as a key regulator of gut macrophage function in host defense. Collectively, our findings uncover a previously unrecognized fibroblast-macrophage crosstalk that governs gut macrophage homeostasis and immunity.</p>\",\"PeriodicalId\":18877,\"journal\":{\"name\":\"Mucosal Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mucosal Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mucimm.2025.06.011\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mucimm.2025.06.011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Fibroblast-derived CSF1 maintains colonization of gut mucosal macrophage to resist bacterial infection.
Macrophages play essential roles in immune defense and tissue homeostasis, but the mechanisms underlying their colonization in the gut mucosa remain incompletely understood. Here, we identify CSF1, primarily derived from fibroblasts, as the dominant factor maintaining mucosal macrophage colonization, whereas IL-34 deficiency alone has a minimal impact. We reveal that CSF1R ligands originate from distinct cellular sources: macrophages at the upper villus region depend on fibroblast-derived CSF1 and IL-34, while macrophages in the lower villus and the submucosal (lower villus + SM) region are regulated by CSF1 from both fibroblasts and endothelial cells. Additionally, within the lower villus + SM region, CSF1-producing CD81+ LepR+ fibroblasts directly interact with CD163+ macrophages, forming a localized niche. The loss of CSF1 in fibroblasts results in accelerated systemic dissemination of Salmonella Typhimurium, highlighting fibroblast-derived CSF1 as a key regulator of gut macrophage function in host defense. Collectively, our findings uncover a previously unrecognized fibroblast-macrophage crosstalk that governs gut macrophage homeostasis and immunity.
期刊介绍:
Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.