{"title":"COPII囊泡的破坏通过SEC-23激活HSF-1。","authors":"Zhidong He, Na Tang, Hao Liu, Xueqing Wang, Yue Yin, Chao Peng, Yidong Shen","doi":"10.1093/jmcb/mjaf017","DOIUrl":null,"url":null,"abstract":"<p><p>HSF-1 is a highly conserved transcription factor that plays a central role in protecting organisms from diverse cellular stresses. However, the mechanisms by which HSF-1 senses and responds to different types of stress remain incompletely understood. COPII-coated vesicles, responsible for transporting cargo from the endoplasmic reticulum to the Golgi apparatus, are essential for protein secretion and cellular homeostasis. Disruption of these vesicles impairs protein secretion and triggers severe proteotoxic stress. Here, we show that HSF-1 directly monitors COPII vesicle dysfunction through interactions with the core COPII component SEC-23, in both Caenorhabditis elegans and NIH3T3 cells. Inhibition of SEC-23 or SAR-1 disrupts COPII vesicle formation, leading to the release of HSF-1 from the COPII complex. This release induces a specific transcriptomic change to restore protein homeostasis. Our findings reveal a conserved mechanism by which HSF-1 responds to COPII vesicle dysregulation, providing new insights into the HSF-1-centered proteostasis network.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The disruption of COPII vesicles activates HSF-1 through SEC-23.\",\"authors\":\"Zhidong He, Na Tang, Hao Liu, Xueqing Wang, Yue Yin, Chao Peng, Yidong Shen\",\"doi\":\"10.1093/jmcb/mjaf017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>HSF-1 is a highly conserved transcription factor that plays a central role in protecting organisms from diverse cellular stresses. However, the mechanisms by which HSF-1 senses and responds to different types of stress remain incompletely understood. COPII-coated vesicles, responsible for transporting cargo from the endoplasmic reticulum to the Golgi apparatus, are essential for protein secretion and cellular homeostasis. Disruption of these vesicles impairs protein secretion and triggers severe proteotoxic stress. Here, we show that HSF-1 directly monitors COPII vesicle dysfunction through interactions with the core COPII component SEC-23, in both Caenorhabditis elegans and NIH3T3 cells. Inhibition of SEC-23 or SAR-1 disrupts COPII vesicle formation, leading to the release of HSF-1 from the COPII complex. This release induces a specific transcriptomic change to restore protein homeostasis. Our findings reveal a conserved mechanism by which HSF-1 responds to COPII vesicle dysregulation, providing new insights into the HSF-1-centered proteostasis network.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjaf017\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjaf017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The disruption of COPII vesicles activates HSF-1 through SEC-23.
HSF-1 is a highly conserved transcription factor that plays a central role in protecting organisms from diverse cellular stresses. However, the mechanisms by which HSF-1 senses and responds to different types of stress remain incompletely understood. COPII-coated vesicles, responsible for transporting cargo from the endoplasmic reticulum to the Golgi apparatus, are essential for protein secretion and cellular homeostasis. Disruption of these vesicles impairs protein secretion and triggers severe proteotoxic stress. Here, we show that HSF-1 directly monitors COPII vesicle dysfunction through interactions with the core COPII component SEC-23, in both Caenorhabditis elegans and NIH3T3 cells. Inhibition of SEC-23 or SAR-1 disrupts COPII vesicle formation, leading to the release of HSF-1 from the COPII complex. This release induces a specific transcriptomic change to restore protein homeostasis. Our findings reveal a conserved mechanism by which HSF-1 responds to COPII vesicle dysregulation, providing new insights into the HSF-1-centered proteostasis network.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.