Abhishek Basu, Muhammad Arif, Kaelin M Wolf, Madeline Behee, Natalie L Johnson, Lenny Pommerolle, Ricardo H Pineda, John Sembrat, Charles N Zawatsky, Szabolcs Dvorácskó, Nathan J Coffey, Joshua K Park, Seray B Karagoz, Grzegorz Godlewski, Tony Jourdan, Judith Harvey-White, Melanie Königshoff, Malliga R Iyer, Resat Cinar
{"title":"靶向大麻素受体1拮抗纤维化肺泡巨噬细胞减轻肺纤维化。","authors":"Abhishek Basu, Muhammad Arif, Kaelin M Wolf, Madeline Behee, Natalie L Johnson, Lenny Pommerolle, Ricardo H Pineda, John Sembrat, Charles N Zawatsky, Szabolcs Dvorácskó, Nathan J Coffey, Joshua K Park, Seray B Karagoz, Grzegorz Godlewski, Tony Jourdan, Judith Harvey-White, Melanie Königshoff, Malliga R Iyer, Resat Cinar","doi":"10.1172/jci.insight.187967","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary fibrosis (PF) is a life-threatening disease that requires effective and well-tolerated therapeutic modalities. Previously, the distinct pathogenic roles of cannabinoid receptor 1 (CB1R) and inducible nitric oxide synthase (iNOS) in the lungs and their joint therapeutic targeting were highlighted in PF. However, the cell-specific role of CB1R in PF has not been explored. Here, we demonstrate that CB1R in alveolar macrophages (AMs) mediates the release of anandamide into the alveoli, which promotes PF by inducing profibrotic macrophages that are accessible to locally delivered antifibrotic therapy. A multitargeted therapy may improve therapeutic efficacy in PF. Pulmonary delivery of 0.5 mg/kg/day MRI-1867 (zevaquenabant), a peripherally acting hybrid CB1R/iNOS inhibitor, is as effective as systemic delivery of 10 mg/kg/day, and also matches the efficacy of nintedanib in mitigating bleomycin-induced PF. A systems pharmacology approach reveals that zevaquenabant and nintedanib treatments reverse pathologic changes in both distinct and shared PF-related pathways, which are conserved in human and mouse. Moreover, zevaquenabant treatment also attenuated fibrosis and profibrotic mediators in human precision-cut lung slices. These findings establish CB1R-expressing AMs as a therapeutic target and support local delivery of dual CB1R/iNOS inhibitor zevaquenabant by inhalation as an effective, well-tolerated, and safer strategy for PF.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting cannabinoid receptor 1 for antagonism in profibrotic alveolar macrophages mitigates pulmonary fibrosis.\",\"authors\":\"Abhishek Basu, Muhammad Arif, Kaelin M Wolf, Madeline Behee, Natalie L Johnson, Lenny Pommerolle, Ricardo H Pineda, John Sembrat, Charles N Zawatsky, Szabolcs Dvorácskó, Nathan J Coffey, Joshua K Park, Seray B Karagoz, Grzegorz Godlewski, Tony Jourdan, Judith Harvey-White, Melanie Königshoff, Malliga R Iyer, Resat Cinar\",\"doi\":\"10.1172/jci.insight.187967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulmonary fibrosis (PF) is a life-threatening disease that requires effective and well-tolerated therapeutic modalities. Previously, the distinct pathogenic roles of cannabinoid receptor 1 (CB1R) and inducible nitric oxide synthase (iNOS) in the lungs and their joint therapeutic targeting were highlighted in PF. However, the cell-specific role of CB1R in PF has not been explored. Here, we demonstrate that CB1R in alveolar macrophages (AMs) mediates the release of anandamide into the alveoli, which promotes PF by inducing profibrotic macrophages that are accessible to locally delivered antifibrotic therapy. A multitargeted therapy may improve therapeutic efficacy in PF. Pulmonary delivery of 0.5 mg/kg/day MRI-1867 (zevaquenabant), a peripherally acting hybrid CB1R/iNOS inhibitor, is as effective as systemic delivery of 10 mg/kg/day, and also matches the efficacy of nintedanib in mitigating bleomycin-induced PF. A systems pharmacology approach reveals that zevaquenabant and nintedanib treatments reverse pathologic changes in both distinct and shared PF-related pathways, which are conserved in human and mouse. Moreover, zevaquenabant treatment also attenuated fibrosis and profibrotic mediators in human precision-cut lung slices. These findings establish CB1R-expressing AMs as a therapeutic target and support local delivery of dual CB1R/iNOS inhibitor zevaquenabant by inhalation as an effective, well-tolerated, and safer strategy for PF.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.187967\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.187967","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Targeting cannabinoid receptor 1 for antagonism in profibrotic alveolar macrophages mitigates pulmonary fibrosis.
Pulmonary fibrosis (PF) is a life-threatening disease that requires effective and well-tolerated therapeutic modalities. Previously, the distinct pathogenic roles of cannabinoid receptor 1 (CB1R) and inducible nitric oxide synthase (iNOS) in the lungs and their joint therapeutic targeting were highlighted in PF. However, the cell-specific role of CB1R in PF has not been explored. Here, we demonstrate that CB1R in alveolar macrophages (AMs) mediates the release of anandamide into the alveoli, which promotes PF by inducing profibrotic macrophages that are accessible to locally delivered antifibrotic therapy. A multitargeted therapy may improve therapeutic efficacy in PF. Pulmonary delivery of 0.5 mg/kg/day MRI-1867 (zevaquenabant), a peripherally acting hybrid CB1R/iNOS inhibitor, is as effective as systemic delivery of 10 mg/kg/day, and also matches the efficacy of nintedanib in mitigating bleomycin-induced PF. A systems pharmacology approach reveals that zevaquenabant and nintedanib treatments reverse pathologic changes in both distinct and shared PF-related pathways, which are conserved in human and mouse. Moreover, zevaquenabant treatment also attenuated fibrosis and profibrotic mediators in human precision-cut lung slices. These findings establish CB1R-expressing AMs as a therapeutic target and support local delivery of dual CB1R/iNOS inhibitor zevaquenabant by inhalation as an effective, well-tolerated, and safer strategy for PF.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.