Fawad Khan, Syed Yaseen Shah, Jawad Ahmad, Alanoud Al Mazroa, Adnan Zahid, Muhammed Ilyas, Qammer Hussain Abbasi, Syed Aziz Shah
{"title":"概括以位置为中心的变化,增强非接触式人类活动识别。","authors":"Fawad Khan, Syed Yaseen Shah, Jawad Ahmad, Alanoud Al Mazroa, Adnan Zahid, Muhammed Ilyas, Qammer Hussain Abbasi, Syed Aziz Shah","doi":"10.3389/fncom.2025.1612928","DOIUrl":null,"url":null,"abstract":"<p><p>Contactless Human Activity Recognition (HAR) has played a critical role in smart healthcare and elderly care homes to monitor patient behavior, detect falls or abnormal activities in real time. The effectiveness of non-invasive HAR is often hindered by location-centric variations in Channel State Information (CSI). These variations limit the ability of HAR models to generalize across new unseen cross-domain environments, for instance, a model trained in one location might not perform well in another physical location. To address this challenge, in this study, we present a novel federated learning (FL) algorithm designed to train a robust global model from local datasets in different localizations. The proposed Federated Weighted Averaging for HAR (Fed-WAHAR) algorithm mitigates location-induced disparities, including heterogeneity and non-Independent and Identically Distributed (non-IID) data distributions. Fed-WAHAR employs a dynamic weighting approach based on local models' accuracy to improve global model classification accuracy and reduce convergence time effectively. We evaluated the performance of Fed-WAHAR using various metrics, including accuracy, precision, recall, F1 score, confusion matrix, and convergence analysis. Experimental results demonstrate that Fed-WAHAR achieves an accuracy of 85% in recognizing human activities across different locations, enhancing the ability of model to infer across new unseen locations.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1612928"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222214/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generalizing location-centric variations to enhance contactless human activity recognition.\",\"authors\":\"Fawad Khan, Syed Yaseen Shah, Jawad Ahmad, Alanoud Al Mazroa, Adnan Zahid, Muhammed Ilyas, Qammer Hussain Abbasi, Syed Aziz Shah\",\"doi\":\"10.3389/fncom.2025.1612928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Contactless Human Activity Recognition (HAR) has played a critical role in smart healthcare and elderly care homes to monitor patient behavior, detect falls or abnormal activities in real time. The effectiveness of non-invasive HAR is often hindered by location-centric variations in Channel State Information (CSI). These variations limit the ability of HAR models to generalize across new unseen cross-domain environments, for instance, a model trained in one location might not perform well in another physical location. To address this challenge, in this study, we present a novel federated learning (FL) algorithm designed to train a robust global model from local datasets in different localizations. The proposed Federated Weighted Averaging for HAR (Fed-WAHAR) algorithm mitigates location-induced disparities, including heterogeneity and non-Independent and Identically Distributed (non-IID) data distributions. Fed-WAHAR employs a dynamic weighting approach based on local models' accuracy to improve global model classification accuracy and reduce convergence time effectively. We evaluated the performance of Fed-WAHAR using various metrics, including accuracy, precision, recall, F1 score, confusion matrix, and convergence analysis. Experimental results demonstrate that Fed-WAHAR achieves an accuracy of 85% in recognizing human activities across different locations, enhancing the ability of model to infer across new unseen locations.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"19 \",\"pages\":\"1612928\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222214/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2025.1612928\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1612928","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Generalizing location-centric variations to enhance contactless human activity recognition.
Contactless Human Activity Recognition (HAR) has played a critical role in smart healthcare and elderly care homes to monitor patient behavior, detect falls or abnormal activities in real time. The effectiveness of non-invasive HAR is often hindered by location-centric variations in Channel State Information (CSI). These variations limit the ability of HAR models to generalize across new unseen cross-domain environments, for instance, a model trained in one location might not perform well in another physical location. To address this challenge, in this study, we present a novel federated learning (FL) algorithm designed to train a robust global model from local datasets in different localizations. The proposed Federated Weighted Averaging for HAR (Fed-WAHAR) algorithm mitigates location-induced disparities, including heterogeneity and non-Independent and Identically Distributed (non-IID) data distributions. Fed-WAHAR employs a dynamic weighting approach based on local models' accuracy to improve global model classification accuracy and reduce convergence time effectively. We evaluated the performance of Fed-WAHAR using various metrics, including accuracy, precision, recall, F1 score, confusion matrix, and convergence analysis. Experimental results demonstrate that Fed-WAHAR achieves an accuracy of 85% in recognizing human activities across different locations, enhancing the ability of model to infer across new unseen locations.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro