{"title":"阳极接触辉光放电电解高碘酸盐降解水中3-氯苯酚的高效活化研究。","authors":"Chao Zhang, Yufan Liu, Huimiao Zhou, Jinyu Zhang, Haiming Yang, Lixiang Li","doi":"10.1080/09593330.2025.2523562","DOIUrl":null,"url":null,"abstract":"<p><p>Periodate (PI) activation by anodic contact glow discharge electrolysis (ACGDE) was used to degrade 3-chlorophenol (3-CP) in water. The effects of the PI concentration, current intensity (mA), anions (Cl<sup>-</sup> and SO<sub>4</sub><sup>2-</sup>), organic compounds (humic acid and RhB), and initial solution pH on the 3-CP removal rate were studied. The results show that PI was efficiently activated by ACGDE, leading to the rapid degradation of 3-CP. For the 1.5-mmol/L (mM) PI activated by ACGDE for 1.5 min, the removal rate of 3-CP (100%) was 19 or 6.7 times higher than that of PI or ACGDE alone. The decomposition of 3-CP was affected by the initial pH. Cr<sup>6+</sup> (·H scavenger), 2-propanol (•OH scavenger), and trichloroacetic acid (TCAA, O<sub>2</sub><sup>·-</sup> scavenger) were added to study the mechanism of PI activation by ACGDE and the main active species responsible for 3-CP degradation. H• generated by ACGDE is a key active species to activate PI. In addition, ACGDE may be a highly efficient approach for PI activation.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"4963-4972"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient activation of periodate by anodic contact glow discharge electrolysis for 3-chlorophenol degradation in water.\",\"authors\":\"Chao Zhang, Yufan Liu, Huimiao Zhou, Jinyu Zhang, Haiming Yang, Lixiang Li\",\"doi\":\"10.1080/09593330.2025.2523562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Periodate (PI) activation by anodic contact glow discharge electrolysis (ACGDE) was used to degrade 3-chlorophenol (3-CP) in water. The effects of the PI concentration, current intensity (mA), anions (Cl<sup>-</sup> and SO<sub>4</sub><sup>2-</sup>), organic compounds (humic acid and RhB), and initial solution pH on the 3-CP removal rate were studied. The results show that PI was efficiently activated by ACGDE, leading to the rapid degradation of 3-CP. For the 1.5-mmol/L (mM) PI activated by ACGDE for 1.5 min, the removal rate of 3-CP (100%) was 19 or 6.7 times higher than that of PI or ACGDE alone. The decomposition of 3-CP was affected by the initial pH. Cr<sup>6+</sup> (·H scavenger), 2-propanol (•OH scavenger), and trichloroacetic acid (TCAA, O<sub>2</sub><sup>·-</sup> scavenger) were added to study the mechanism of PI activation by ACGDE and the main active species responsible for 3-CP degradation. H• generated by ACGDE is a key active species to activate PI. In addition, ACGDE may be a highly efficient approach for PI activation.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"4963-4972\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2523562\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2523562","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Highly efficient activation of periodate by anodic contact glow discharge electrolysis for 3-chlorophenol degradation in water.
Periodate (PI) activation by anodic contact glow discharge electrolysis (ACGDE) was used to degrade 3-chlorophenol (3-CP) in water. The effects of the PI concentration, current intensity (mA), anions (Cl- and SO42-), organic compounds (humic acid and RhB), and initial solution pH on the 3-CP removal rate were studied. The results show that PI was efficiently activated by ACGDE, leading to the rapid degradation of 3-CP. For the 1.5-mmol/L (mM) PI activated by ACGDE for 1.5 min, the removal rate of 3-CP (100%) was 19 or 6.7 times higher than that of PI or ACGDE alone. The decomposition of 3-CP was affected by the initial pH. Cr6+ (·H scavenger), 2-propanol (•OH scavenger), and trichloroacetic acid (TCAA, O2·- scavenger) were added to study the mechanism of PI activation by ACGDE and the main active species responsible for 3-CP degradation. H• generated by ACGDE is a key active species to activate PI. In addition, ACGDE may be a highly efficient approach for PI activation.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current