Gavin Huangfu, Abdul R Ihdayhid, Simon Kwok, John Konstantopoulos, Kai Niu, Juan Lu, Harry Smallbone, Gemma A Figtree, Clara K Chow, Lawrence Dembo, Brendan Adler, Christian Hamilton-Craig, Stuart M Grieve, Matthew T V Chan, Craig Butler, Vikas Tandon, Peter Nagele, Pamela K Woodard, Marko Mrkobrada, Wojciech Szczeklik, Yang Faridah Abdul Aziz, Bruce Biccard, Philip James Devereaux, Tej Sheth, Girish Dwivedi, Benjamin J W Chow
{"title":"新的CAC弥散度和密度评分预测心肌梗死和心血管死亡率。","authors":"Gavin Huangfu, Abdul R Ihdayhid, Simon Kwok, John Konstantopoulos, Kai Niu, Juan Lu, Harry Smallbone, Gemma A Figtree, Clara K Chow, Lawrence Dembo, Brendan Adler, Christian Hamilton-Craig, Stuart M Grieve, Matthew T V Chan, Craig Butler, Vikas Tandon, Peter Nagele, Pamela K Woodard, Marko Mrkobrada, Wojciech Szczeklik, Yang Faridah Abdul Aziz, Bruce Biccard, Philip James Devereaux, Tej Sheth, Girish Dwivedi, Benjamin J W Chow","doi":"10.1161/CIRCIMAGING.125.018059","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Coronary artery calcification (CAC) provides robust prediction for major adverse cardiovascular events (MACE), but current techniques disregard plaque distribution and protective effects of high CAC density. We investigated whether a novel CAC-dispersion and density (CAC-DAD) score will exhibit superior prognostic value compared with the Agatston score (AS) for MACE prediction.</p><p><strong>Methods: </strong>We conducted a multicenter, retrospective, cross-sectional study of 961 patients (median age, 67 years; 61% male) who underwent cardiac computed tomography for cardiovascular or perioperative risk assessment. Blinded analyzers applied deep learning algorithms to noncontrast scans to calculate the CAC-DAD score, which adjusts for the spatial distribution of CAC and assigns a protective weight factor for lesions with ≥1000 Hounsfield units. Associations were assessed using frailty regression.</p><p><strong>Results: </strong>Over a median follow-up of 30 (30-460) days, 61 patients experienced MACE (nonfatal myocardial infarction or cardiovascular mortality). An elevated CAC-DAD score (≥2050 based on optimal cutoff) captured more MACE than AS ≥400 (74% versus 57%; <i>P</i>=0.002). Univariable analysis revealed that an elevated CAC-DAD score, AS ≥400 and AS ≥100, age, diabetes, hypertension, and statin use predicted MACE. On multivariable analysis, only the CAC-DAD score (hazard ratio, 2.57 [95% CI, 1.43-4.61]; <i>P</i>=0.002), age, statins, and diabetes remained significant. The inclusion of the CAC-DAD score in a predictive model containing demographic factors and AS improved the C statistic from 0.61 to 0.66 (<i>P</i>=0.008).</p><p><strong>Conclusions: </strong>The fully automated CAC-DAD score improves MACE prediction compared with the AS. Patients with a high CAC-DAD score, including those with a low AS, may be at higher risk and warrant intensification of their preventative therapies.</p>","PeriodicalId":10202,"journal":{"name":"Circulation: Cardiovascular Imaging","volume":" ","pages":"e018059"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel CAC Dispersion and Density Score to Predict Myocardial Infarction and Cardiovascular Mortality.\",\"authors\":\"Gavin Huangfu, Abdul R Ihdayhid, Simon Kwok, John Konstantopoulos, Kai Niu, Juan Lu, Harry Smallbone, Gemma A Figtree, Clara K Chow, Lawrence Dembo, Brendan Adler, Christian Hamilton-Craig, Stuart M Grieve, Matthew T V Chan, Craig Butler, Vikas Tandon, Peter Nagele, Pamela K Woodard, Marko Mrkobrada, Wojciech Szczeklik, Yang Faridah Abdul Aziz, Bruce Biccard, Philip James Devereaux, Tej Sheth, Girish Dwivedi, Benjamin J W Chow\",\"doi\":\"10.1161/CIRCIMAGING.125.018059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Coronary artery calcification (CAC) provides robust prediction for major adverse cardiovascular events (MACE), but current techniques disregard plaque distribution and protective effects of high CAC density. We investigated whether a novel CAC-dispersion and density (CAC-DAD) score will exhibit superior prognostic value compared with the Agatston score (AS) for MACE prediction.</p><p><strong>Methods: </strong>We conducted a multicenter, retrospective, cross-sectional study of 961 patients (median age, 67 years; 61% male) who underwent cardiac computed tomography for cardiovascular or perioperative risk assessment. Blinded analyzers applied deep learning algorithms to noncontrast scans to calculate the CAC-DAD score, which adjusts for the spatial distribution of CAC and assigns a protective weight factor for lesions with ≥1000 Hounsfield units. Associations were assessed using frailty regression.</p><p><strong>Results: </strong>Over a median follow-up of 30 (30-460) days, 61 patients experienced MACE (nonfatal myocardial infarction or cardiovascular mortality). An elevated CAC-DAD score (≥2050 based on optimal cutoff) captured more MACE than AS ≥400 (74% versus 57%; <i>P</i>=0.002). Univariable analysis revealed that an elevated CAC-DAD score, AS ≥400 and AS ≥100, age, diabetes, hypertension, and statin use predicted MACE. On multivariable analysis, only the CAC-DAD score (hazard ratio, 2.57 [95% CI, 1.43-4.61]; <i>P</i>=0.002), age, statins, and diabetes remained significant. The inclusion of the CAC-DAD score in a predictive model containing demographic factors and AS improved the C statistic from 0.61 to 0.66 (<i>P</i>=0.008).</p><p><strong>Conclusions: </strong>The fully automated CAC-DAD score improves MACE prediction compared with the AS. Patients with a high CAC-DAD score, including those with a low AS, may be at higher risk and warrant intensification of their preventative therapies.</p>\",\"PeriodicalId\":10202,\"journal\":{\"name\":\"Circulation: Cardiovascular Imaging\",\"volume\":\" \",\"pages\":\"e018059\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Cardiovascular Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCIMAGING.125.018059\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Cardiovascular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCIMAGING.125.018059","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Novel CAC Dispersion and Density Score to Predict Myocardial Infarction and Cardiovascular Mortality.
Background: Coronary artery calcification (CAC) provides robust prediction for major adverse cardiovascular events (MACE), but current techniques disregard plaque distribution and protective effects of high CAC density. We investigated whether a novel CAC-dispersion and density (CAC-DAD) score will exhibit superior prognostic value compared with the Agatston score (AS) for MACE prediction.
Methods: We conducted a multicenter, retrospective, cross-sectional study of 961 patients (median age, 67 years; 61% male) who underwent cardiac computed tomography for cardiovascular or perioperative risk assessment. Blinded analyzers applied deep learning algorithms to noncontrast scans to calculate the CAC-DAD score, which adjusts for the spatial distribution of CAC and assigns a protective weight factor for lesions with ≥1000 Hounsfield units. Associations were assessed using frailty regression.
Results: Over a median follow-up of 30 (30-460) days, 61 patients experienced MACE (nonfatal myocardial infarction or cardiovascular mortality). An elevated CAC-DAD score (≥2050 based on optimal cutoff) captured more MACE than AS ≥400 (74% versus 57%; P=0.002). Univariable analysis revealed that an elevated CAC-DAD score, AS ≥400 and AS ≥100, age, diabetes, hypertension, and statin use predicted MACE. On multivariable analysis, only the CAC-DAD score (hazard ratio, 2.57 [95% CI, 1.43-4.61]; P=0.002), age, statins, and diabetes remained significant. The inclusion of the CAC-DAD score in a predictive model containing demographic factors and AS improved the C statistic from 0.61 to 0.66 (P=0.008).
Conclusions: The fully automated CAC-DAD score improves MACE prediction compared with the AS. Patients with a high CAC-DAD score, including those with a low AS, may be at higher risk and warrant intensification of their preventative therapies.
期刊介绍:
Circulation: Cardiovascular Imaging, an American Heart Association journal, publishes high-quality, patient-centric articles focusing on observational studies, clinical trials, and advances in applied (translational) research. The journal features innovative, multimodality approaches to the diagnosis and risk stratification of cardiovascular disease. Modalities covered include echocardiography, cardiac computed tomography, cardiac magnetic resonance imaging and spectroscopy, magnetic resonance angiography, cardiac positron emission tomography, noninvasive assessment of vascular and endothelial function, radionuclide imaging, molecular imaging, and others.
Article types considered by Circulation: Cardiovascular Imaging include Original Research, Research Letters, Advances in Cardiovascular Imaging, Clinical Implications of Molecular Imaging Research, How to Use Imaging, Translating Novel Imaging Technologies into Clinical Applications, and Cardiovascular Images.