Chi Ming Yim, Yu Zheng, Olivia R Armitage, Dibyashree Chakraborti, Craig J Wells, Seunghyun Khim, Andrew P Mackenzie, Peter Wahl
{"title":"表面极性驱动的非周期上层结构的吸附诱导形成。","authors":"Chi Ming Yim, Yu Zheng, Olivia R Armitage, Dibyashree Chakraborti, Craig J Wells, Seunghyun Khim, Andrew P Mackenzie, Peter Wahl","doi":"10.1038/s43246-025-00851-x","DOIUrl":null,"url":null,"abstract":"<p><p>The chemical and electronic properties of surfaces and interfaces are important for many technologically relevant processes, be it in information processing, where interfacial electronic properties are crucial for device performance, or in catalytic processes, which depend on the types and densities of active nucleation sites for chemical reactions. Quasi-periodic and nonperiodic crystalline surfaces offer new opportunities because of their inherent inhomogeneity, resulting in localisation and properties vastly different from those of surfaces described by conventional Bravais lattices. Here, we demonstrate the formation of a nonperiodic tiling structure on the surface of the frustrated antiferromagnet PdCrO<sub>2</sub> due to hydrogen adsorption. The tiling structure exhibits no long-range periodicity but comprises few-atom hexagonally packed domains covering large terraces. Measurement of the local density of states by tunnelling spectroscopy reveals adsorption-driven modifications to the quasi-2D electronic structure of the surface layer, showing exciting opportunities arising from electron localisation.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"128"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12225475/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adsorbate-induced formation of a surface-polarity-driven nonperiodic superstructure.\",\"authors\":\"Chi Ming Yim, Yu Zheng, Olivia R Armitage, Dibyashree Chakraborti, Craig J Wells, Seunghyun Khim, Andrew P Mackenzie, Peter Wahl\",\"doi\":\"10.1038/s43246-025-00851-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The chemical and electronic properties of surfaces and interfaces are important for many technologically relevant processes, be it in information processing, where interfacial electronic properties are crucial for device performance, or in catalytic processes, which depend on the types and densities of active nucleation sites for chemical reactions. Quasi-periodic and nonperiodic crystalline surfaces offer new opportunities because of their inherent inhomogeneity, resulting in localisation and properties vastly different from those of surfaces described by conventional Bravais lattices. Here, we demonstrate the formation of a nonperiodic tiling structure on the surface of the frustrated antiferromagnet PdCrO<sub>2</sub> due to hydrogen adsorption. The tiling structure exhibits no long-range periodicity but comprises few-atom hexagonally packed domains covering large terraces. Measurement of the local density of states by tunnelling spectroscopy reveals adsorption-driven modifications to the quasi-2D electronic structure of the surface layer, showing exciting opportunities arising from electron localisation.</p>\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\"6 1\",\"pages\":\"128\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12225475/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43246-025-00851-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00851-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Adsorbate-induced formation of a surface-polarity-driven nonperiodic superstructure.
The chemical and electronic properties of surfaces and interfaces are important for many technologically relevant processes, be it in information processing, where interfacial electronic properties are crucial for device performance, or in catalytic processes, which depend on the types and densities of active nucleation sites for chemical reactions. Quasi-periodic and nonperiodic crystalline surfaces offer new opportunities because of their inherent inhomogeneity, resulting in localisation and properties vastly different from those of surfaces described by conventional Bravais lattices. Here, we demonstrate the formation of a nonperiodic tiling structure on the surface of the frustrated antiferromagnet PdCrO2 due to hydrogen adsorption. The tiling structure exhibits no long-range periodicity but comprises few-atom hexagonally packed domains covering large terraces. Measurement of the local density of states by tunnelling spectroscopy reveals adsorption-driven modifications to the quasi-2D electronic structure of the surface layer, showing exciting opportunities arising from electron localisation.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.