构建可调节尺寸和内皮化的多孔水凝胶微管的气泡铸造策略。

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Haonan Sun, Kunming Xing, Kexin Liu, Yumin Liu, Yuyan Li, Yingnan Sun, Shusheng Zhang
{"title":"构建可调节尺寸和内皮化的多孔水凝胶微管的气泡铸造策略。","authors":"Haonan Sun, Kunming Xing, Kexin Liu, Yumin Liu, Yuyan Li, Yingnan Sun, Shusheng Zhang","doi":"10.1088/1758-5090/adebb2","DOIUrl":null,"url":null,"abstract":"<p><p>The reconstruction of human tubular structures-characterized by adjustable small diameters (<6 mm), multifurcated morphologies, and biomimetic functionality-remains a significant challenge, particularly for researchers lacking specialized fabrication skills. In this work, we present a simple and effective strategy to fabricate freestanding, multifurcated hydrogel microtubes with tunable diameters, perfusability, and endothelialization capability by integrating stimuli-responsive hydrogels with a bubble casting technique. Leveraging the adhesive interaction between hydrogels and silicone molds, this method enables the formation of multifurcated hydrogel microtubes with uniform thickness and interconnected structures within modularly assembled molds. The integration of temperature-sensitive gelatine and photo-crosslinkable methacrylated gelatin (GelMA) permits the rapid and irreversible formation of robust hydrogel microtubes. A wide range of 2D structures including straight, L-shaped, T-shaped, bifurcated, and trifurcated microtubes can be readily produced, and further assembled into interconnected 3D microtube network using Lego-like assembly with the assistance of T- or Y-shaped adhesive connectors. The experimental results prove that the fabricated microtubes exhibit favorable physiological stability, mechanical strength, semi-permeability, hemocompatibility, cytocompatibility and anti-thrombogenicity. Moreover, the successful perfusion of whole rabbit blood and endothelialization with human umbilical vein endothelial cells (HUVECs) demonstrate their functional potential as biomimetic vascular scaffolds. Overall, our work introduces a robust, accessible, and modular strategy for generating multifurcated hydrogel microtubes featuring adjustable fine diameters. The technique is particularly suited for applications in tissue engineering and vascular modeling, and can be easily adopted by researchers across disciplines without the need for specialized equipment or training.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubble casting strategy to construct multifurcated hydrogel microtubes with adjustable dimensions and endothelialization.\",\"authors\":\"Haonan Sun, Kunming Xing, Kexin Liu, Yumin Liu, Yuyan Li, Yingnan Sun, Shusheng Zhang\",\"doi\":\"10.1088/1758-5090/adebb2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The reconstruction of human tubular structures-characterized by adjustable small diameters (<6 mm), multifurcated morphologies, and biomimetic functionality-remains a significant challenge, particularly for researchers lacking specialized fabrication skills. In this work, we present a simple and effective strategy to fabricate freestanding, multifurcated hydrogel microtubes with tunable diameters, perfusability, and endothelialization capability by integrating stimuli-responsive hydrogels with a bubble casting technique. Leveraging the adhesive interaction between hydrogels and silicone molds, this method enables the formation of multifurcated hydrogel microtubes with uniform thickness and interconnected structures within modularly assembled molds. The integration of temperature-sensitive gelatine and photo-crosslinkable methacrylated gelatin (GelMA) permits the rapid and irreversible formation of robust hydrogel microtubes. A wide range of 2D structures including straight, L-shaped, T-shaped, bifurcated, and trifurcated microtubes can be readily produced, and further assembled into interconnected 3D microtube network using Lego-like assembly with the assistance of T- or Y-shaped adhesive connectors. The experimental results prove that the fabricated microtubes exhibit favorable physiological stability, mechanical strength, semi-permeability, hemocompatibility, cytocompatibility and anti-thrombogenicity. Moreover, the successful perfusion of whole rabbit blood and endothelialization with human umbilical vein endothelial cells (HUVECs) demonstrate their functional potential as biomimetic vascular scaffolds. Overall, our work introduces a robust, accessible, and modular strategy for generating multifurcated hydrogel microtubes featuring adjustable fine diameters. The technique is particularly suited for applications in tissue engineering and vascular modeling, and can be easily adopted by researchers across disciplines without the need for specialized equipment or training.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/adebb2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adebb2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

人体管状结构具有可调节的小直径(< 6mm)、多分叉形态和仿生功能,其重建仍然是一个重大挑战,特别是对于缺乏专业制造技能的研究人员。在这项工作中,我们提出了一种简单有效的策略,通过将刺激响应的水凝胶与气泡铸造技术相结合,来制造具有可调直径、灌注性和内皮化能力的独立、多分叉水凝胶微管。利用水凝胶和硅胶模具之间的粘接相互作用,这种方法可以在模块化组装的模具中形成厚度均匀、结构相互连接的多分叉水凝胶微管。温度敏感明胶和光交联甲基丙烯酸明胶(GelMA)的集成允许快速和不可逆地形成坚固的水凝胶微管。广泛的二维结构,包括直、l型、T型、分岔和三叉微管可以很容易地生产,并进一步组装成相互连接的三维微管网络使用乐高类似的组装与T型或y型粘接连接器的帮助。实验结果表明,制备的微管具有良好的生理稳定性、机械强度、半渗透性、血液相容性、细胞相容性和抗血栓性。此外,兔全血灌注和人脐静脉内皮细胞(HUVECs)内皮化的成功证明了其作为仿生血管支架的功能潜力。总的来说,我们的工作介绍了一种强大的,可访问的,模块化的策略,用于生成具有可调细直径的多分叉水凝胶微管。该技术特别适合于组织工程和血管建模的应用,并且可以很容易地被跨学科的研究人员采用,而不需要专门的设备或培训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bubble casting strategy to construct multifurcated hydrogel microtubes with adjustable dimensions and endothelialization.

The reconstruction of human tubular structures-characterized by adjustable small diameters (<6 mm), multifurcated morphologies, and biomimetic functionality-remains a significant challenge, particularly for researchers lacking specialized fabrication skills. In this work, we present a simple and effective strategy to fabricate freestanding, multifurcated hydrogel microtubes with tunable diameters, perfusability, and endothelialization capability by integrating stimuli-responsive hydrogels with a bubble casting technique. Leveraging the adhesive interaction between hydrogels and silicone molds, this method enables the formation of multifurcated hydrogel microtubes with uniform thickness and interconnected structures within modularly assembled molds. The integration of temperature-sensitive gelatine and photo-crosslinkable methacrylated gelatin (GelMA) permits the rapid and irreversible formation of robust hydrogel microtubes. A wide range of 2D structures including straight, L-shaped, T-shaped, bifurcated, and trifurcated microtubes can be readily produced, and further assembled into interconnected 3D microtube network using Lego-like assembly with the assistance of T- or Y-shaped adhesive connectors. The experimental results prove that the fabricated microtubes exhibit favorable physiological stability, mechanical strength, semi-permeability, hemocompatibility, cytocompatibility and anti-thrombogenicity. Moreover, the successful perfusion of whole rabbit blood and endothelialization with human umbilical vein endothelial cells (HUVECs) demonstrate their functional potential as biomimetic vascular scaffolds. Overall, our work introduces a robust, accessible, and modular strategy for generating multifurcated hydrogel microtubes featuring adjustable fine diameters. The technique is particularly suited for applications in tissue engineering and vascular modeling, and can be easily adopted by researchers across disciplines without the need for specialized equipment or training.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信