ShinySC:基于R/ shine的桌面应用程序,用于无缝分析scRNA-Seq数据。

IF 4.4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Po-Jung Huang, Fang-Yu Tsai, Yi-Ju Wu, Yi-Chen Weng, Chi-Ching Lee, Sin-Hong Shih, Shih Sheng Jiang
{"title":"ShinySC:基于R/ shine的桌面应用程序,用于无缝分析scRNA-Seq数据。","authors":"Po-Jung Huang, Fang-Yu Tsai, Yi-Ju Wu, Yi-Chen Weng, Chi-Ching Lee, Sin-Hong Shih, Shih Sheng Jiang","doi":"10.1016/j.bj.2025.100885","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single-cell RNA sequencing (scRNA-seq) enables detailed profiling of cellular heterogeneity, but complex workflows and diverse data formats limit accessibility for clinicians and researchers without programming expertise.</p><p><strong>Results: </strong>We introduce ShinySC, an R/Shiny-based desktop application designed to streamline comprehensive scRNA-seq analysis through an intuitive graphical interface. ShinySC supports various input formats, including 10x Genomics, Seurat, Scanpy, BD Rhapsody, and CellView. The tool integrates essential analytical procedures such as quality control, normalization, dimensionality reduction, clustering, marker gene identification, batch correction, differential expression analysis, and trajectory inference. Notably, ShinySC implements multiple automatic cell-type annotation methods-reference-based (SingleR), marker-based (ScType, scCATCH), and GPT-based (GPTCelltype)-with features for side-by-side comparison and manual label refinement. Benchmarking indicates robust performance for datasets containing up to 200,000 cells on standard desktop systems with 64 GB RAM, with analysis duration dependent on specific tasks and annotation methods. Demonstrative analyses of PBMC and interferon-stimulated datasets confirm ShinySC's efficacy in accurately annotating cell types and capturing condition-specific transcriptional dynamics.</p><p><strong>Conclusions: </strong>ShinySC provides a unified, user-friendly, and scalable platform for scRNA-seq analysis explicitly tailored for non-programming users. It surpasses existing limitations by accommodating multiple data formats, employing versatile annotation strategies, and generating high-quality, publication-ready figures. Available freely across Windows, macOS, and Linux platforms, ShinySC enhances the accessibility and reproducibility of single-cell transcriptomic research.</p><p><strong>Availability: </strong>http://tardis.cgu.edu.tw/ShinySC.</p>","PeriodicalId":8934,"journal":{"name":"Biomedical Journal","volume":" ","pages":"100885"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ShinySC: an R/Shiny-based desktop application for seamless analysis of scRNA-Seq data.\",\"authors\":\"Po-Jung Huang, Fang-Yu Tsai, Yi-Ju Wu, Yi-Chen Weng, Chi-Ching Lee, Sin-Hong Shih, Shih Sheng Jiang\",\"doi\":\"10.1016/j.bj.2025.100885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Single-cell RNA sequencing (scRNA-seq) enables detailed profiling of cellular heterogeneity, but complex workflows and diverse data formats limit accessibility for clinicians and researchers without programming expertise.</p><p><strong>Results: </strong>We introduce ShinySC, an R/Shiny-based desktop application designed to streamline comprehensive scRNA-seq analysis through an intuitive graphical interface. ShinySC supports various input formats, including 10x Genomics, Seurat, Scanpy, BD Rhapsody, and CellView. The tool integrates essential analytical procedures such as quality control, normalization, dimensionality reduction, clustering, marker gene identification, batch correction, differential expression analysis, and trajectory inference. Notably, ShinySC implements multiple automatic cell-type annotation methods-reference-based (SingleR), marker-based (ScType, scCATCH), and GPT-based (GPTCelltype)-with features for side-by-side comparison and manual label refinement. Benchmarking indicates robust performance for datasets containing up to 200,000 cells on standard desktop systems with 64 GB RAM, with analysis duration dependent on specific tasks and annotation methods. Demonstrative analyses of PBMC and interferon-stimulated datasets confirm ShinySC's efficacy in accurately annotating cell types and capturing condition-specific transcriptional dynamics.</p><p><strong>Conclusions: </strong>ShinySC provides a unified, user-friendly, and scalable platform for scRNA-seq analysis explicitly tailored for non-programming users. It surpasses existing limitations by accommodating multiple data formats, employing versatile annotation strategies, and generating high-quality, publication-ready figures. Available freely across Windows, macOS, and Linux platforms, ShinySC enhances the accessibility and reproducibility of single-cell transcriptomic research.</p><p><strong>Availability: </strong>http://tardis.cgu.edu.tw/ShinySC.</p>\",\"PeriodicalId\":8934,\"journal\":{\"name\":\"Biomedical Journal\",\"volume\":\" \",\"pages\":\"100885\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bj.2025.100885\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bj.2025.100885","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:单细胞RNA测序(scRNA-seq)能够详细分析细胞异质性,但复杂的工作流程和多样化的数据格式限制了没有编程专业知识的临床医生和研究人员的可访问性。结果:我们介绍了ShinySC,一个基于R/ shine的桌面应用程序,旨在通过直观的图形界面简化全面的scRNA-seq分析。ShinySC支持各种输入格式,包括10x Genomics, Seurat, Scanpy, BD Rhapsody和CellView。该工具集成了必要的分析程序,如质量控制、标准化、降维、聚类、标记基因鉴定、批量校正、差异表达分析和轨迹推断。值得注意的是,ShinySC实现了多种自动单元格类型注释方法——基于引用的(SingleR)、基于标记的(ScType、scCATCH)和基于gpt的(GPTCelltype)——具有并排比较和手动标签优化的功能。基准测试表明,在具有64 GB RAM的标准桌面系统上,包含多达200,000个单元格的数据集具有强大的性能,分析持续时间取决于特定的任务和注释方法。对PBMC和干扰素刺激数据集的论证性分析证实了ShinySC在准确注释细胞类型和捕获条件特异性转录动力学方面的功效。结论:ShinySC为非编程用户提供了一个统一的、用户友好的、可扩展的scRNA-seq分析平台。它通过容纳多种数据格式、采用通用注释策略和生成高质量、可发布的图形,超越了现有的限制。ShinySC可在Windows、macOS和Linux平台上免费使用,增强了单细胞转录组学研究的可访问性和可重复性。可用性:http://tardis.cgu.edu.tw/ShinySC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ShinySC: an R/Shiny-based desktop application for seamless analysis of scRNA-Seq data.

Background: Single-cell RNA sequencing (scRNA-seq) enables detailed profiling of cellular heterogeneity, but complex workflows and diverse data formats limit accessibility for clinicians and researchers without programming expertise.

Results: We introduce ShinySC, an R/Shiny-based desktop application designed to streamline comprehensive scRNA-seq analysis through an intuitive graphical interface. ShinySC supports various input formats, including 10x Genomics, Seurat, Scanpy, BD Rhapsody, and CellView. The tool integrates essential analytical procedures such as quality control, normalization, dimensionality reduction, clustering, marker gene identification, batch correction, differential expression analysis, and trajectory inference. Notably, ShinySC implements multiple automatic cell-type annotation methods-reference-based (SingleR), marker-based (ScType, scCATCH), and GPT-based (GPTCelltype)-with features for side-by-side comparison and manual label refinement. Benchmarking indicates robust performance for datasets containing up to 200,000 cells on standard desktop systems with 64 GB RAM, with analysis duration dependent on specific tasks and annotation methods. Demonstrative analyses of PBMC and interferon-stimulated datasets confirm ShinySC's efficacy in accurately annotating cell types and capturing condition-specific transcriptional dynamics.

Conclusions: ShinySC provides a unified, user-friendly, and scalable platform for scRNA-seq analysis explicitly tailored for non-programming users. It surpasses existing limitations by accommodating multiple data formats, employing versatile annotation strategies, and generating high-quality, publication-ready figures. Available freely across Windows, macOS, and Linux platforms, ShinySC enhances the accessibility and reproducibility of single-cell transcriptomic research.

Availability: http://tardis.cgu.edu.tw/ShinySC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Journal
Biomedical Journal Medicine-General Medicine
CiteScore
11.60
自引率
1.80%
发文量
128
审稿时长
42 days
期刊介绍: Biomedical Journal publishes 6 peer-reviewed issues per year in all fields of clinical and biomedical sciences for an internationally diverse authorship. Unlike most open access journals, which are free to readers but not authors, Biomedical Journal does not charge for subscription, submission, processing or publication of manuscripts, nor for color reproduction of photographs. Clinical studies, accounts of clinical trials, biomarker studies, and characterization of human pathogens are within the scope of the journal, as well as basic studies in model species such as Escherichia coli, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealing the function of molecules, cells, and tissues relevant for human health. However, articles on other species can be published if they contribute to our understanding of basic mechanisms of biology. A highly-cited international editorial board assures timely publication of manuscripts. Reviews on recent progress in biomedical sciences are commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信