设计用于光热电和级联催化驱动的铜氧化-铁氧化-细胞凋亡治疗的硫空位氧化还原干扰物。

IF 36.3 1区 材料科学 Q1 Engineering
Mengshu Xu, Jingwei Liu, Lili Feng, Jiahe Hu, Wei Guo, Huiming Lin, Bin Liu, Yanlin Zhu, Shuyao Li, Elyor Berdimurodov, Avez Sharipov, Piaoping Yang
{"title":"设计用于光热电和级联催化驱动的铜氧化-铁氧化-细胞凋亡治疗的硫空位氧化还原干扰物。","authors":"Mengshu Xu, Jingwei Liu, Lili Feng, Jiahe Hu, Wei Guo, Huiming Lin, Bin Liu, Yanlin Zhu, Shuyao Li, Elyor Berdimurodov, Avez Sharipov, Piaoping Yang","doi":"10.1007/s40820-025-01828-8","DOIUrl":null,"url":null,"abstract":"<p><p>The therapeutic efficacy of cuproptosis, ferroptosis, and apoptosis is hindered by inadequate intracellular copper and iron levels, hypoxia, and elevated glutathione (GSH) expression in tumor cells. Thermoelectric technology is an emerging frontier in medical therapy that aims to achieve efficient thermal and electrical transport characteristics within a narrow thermal range for biological systems. Here, we systematically constructed biodegradable Cu<sub>2</sub>MnS<sub>3-x</sub>-PEG/glucose oxidase (MCPG) with sulfur vacancies (S<sub>V</sub>) using photothermoelectric catalysis (PTEC), photothermal-enhanced enzyme catalysis, and starvation therapy. This triggers GSH consumption and disrupts intracellular redox homeostasis, leading to immunogenic cell death. Under 1064 nm laser irradiation, MCPG enriched with S<sub>V</sub>, owing to doping, generates a local temperature gradient that activates PTEC and produces toxic reactive oxygen species (ROS). Hydroxyl radicals and oxygen are generated through peroxide and catalase-like processes. Increased oxygen levels alleviate tumor hypoxia, whereas hydrogen peroxide production from glycometabolism provides sufficient ROS for a cascade catalytic reaction, establishing a self-reinforcing positive mechanism. Density functional theory calculations demonstrated that vacancy defects effectively enhanced enzyme catalytic activity. Multimodal imaging-guided synergistic therapy not only damages tumor cells, but also elicits an antitumor immune response to inhibit tumor metastasis. This study offers novel insights into the cuproptosis/ferroptosis/apoptosis pathways of Cu-based PTEC nanozymes.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":"321"},"PeriodicalIF":36.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227396/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing a Sulfur Vacancy Redox Disruptor for Photothermoelectric and Cascade-Catalytic-Driven Cuproptosis-Ferroptosis-Apoptosis Therapy.\",\"authors\":\"Mengshu Xu, Jingwei Liu, Lili Feng, Jiahe Hu, Wei Guo, Huiming Lin, Bin Liu, Yanlin Zhu, Shuyao Li, Elyor Berdimurodov, Avez Sharipov, Piaoping Yang\",\"doi\":\"10.1007/s40820-025-01828-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The therapeutic efficacy of cuproptosis, ferroptosis, and apoptosis is hindered by inadequate intracellular copper and iron levels, hypoxia, and elevated glutathione (GSH) expression in tumor cells. Thermoelectric technology is an emerging frontier in medical therapy that aims to achieve efficient thermal and electrical transport characteristics within a narrow thermal range for biological systems. Here, we systematically constructed biodegradable Cu<sub>2</sub>MnS<sub>3-x</sub>-PEG/glucose oxidase (MCPG) with sulfur vacancies (S<sub>V</sub>) using photothermoelectric catalysis (PTEC), photothermal-enhanced enzyme catalysis, and starvation therapy. This triggers GSH consumption and disrupts intracellular redox homeostasis, leading to immunogenic cell death. Under 1064 nm laser irradiation, MCPG enriched with S<sub>V</sub>, owing to doping, generates a local temperature gradient that activates PTEC and produces toxic reactive oxygen species (ROS). Hydroxyl radicals and oxygen are generated through peroxide and catalase-like processes. Increased oxygen levels alleviate tumor hypoxia, whereas hydrogen peroxide production from glycometabolism provides sufficient ROS for a cascade catalytic reaction, establishing a self-reinforcing positive mechanism. Density functional theory calculations demonstrated that vacancy defects effectively enhanced enzyme catalytic activity. Multimodal imaging-guided synergistic therapy not only damages tumor cells, but also elicits an antitumor immune response to inhibit tumor metastasis. This study offers novel insights into the cuproptosis/ferroptosis/apoptosis pathways of Cu-based PTEC nanozymes.</p>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"321\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227396/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-025-01828-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01828-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤细胞内铜和铁水平不足、缺氧和谷胱甘肽(GSH)表达升高阻碍了铜下垂、铁下垂和细胞凋亡的治疗效果。热电技术是医学治疗的新兴前沿,旨在实现生物系统在狭窄的热范围内有效的热和电传输特性。本研究采用光热电催化(PTEC)、光热增强酶催化(photothermal-enhanced enzyme catalytic, PTEC)和饥饿疗法,系统构建了具有硫空位(SV)的可生物降解Cu2MnS3-x-PEG/葡萄糖氧化酶(MCPG)。这触发谷胱甘肽消耗,破坏细胞内氧化还原稳态,导致免疫原性细胞死亡。在1064 nm激光照射下,由于掺杂,富含SV的MCPG会产生局部温度梯度,激活PTEC并产生有毒的活性氧(ROS)。羟基自由基和氧是通过过氧化氢酶和过氧化氢酶样过程产生的。增加的氧水平减轻了肿瘤缺氧,而糖代谢产生的过氧化氢为级联催化反应提供了足够的ROS,建立了一个自我强化的积极机制。密度泛函理论计算表明,空位缺陷能有效提高酶的催化活性。多模态成像引导的协同治疗不仅能损伤肿瘤细胞,还能引发抗肿瘤免疫反应,抑制肿瘤转移。这项研究为铜基PTEC纳米酶的铜沉降/铁沉降/凋亡途径提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a Sulfur Vacancy Redox Disruptor for Photothermoelectric and Cascade-Catalytic-Driven Cuproptosis-Ferroptosis-Apoptosis Therapy.

The therapeutic efficacy of cuproptosis, ferroptosis, and apoptosis is hindered by inadequate intracellular copper and iron levels, hypoxia, and elevated glutathione (GSH) expression in tumor cells. Thermoelectric technology is an emerging frontier in medical therapy that aims to achieve efficient thermal and electrical transport characteristics within a narrow thermal range for biological systems. Here, we systematically constructed biodegradable Cu2MnS3-x-PEG/glucose oxidase (MCPG) with sulfur vacancies (SV) using photothermoelectric catalysis (PTEC), photothermal-enhanced enzyme catalysis, and starvation therapy. This triggers GSH consumption and disrupts intracellular redox homeostasis, leading to immunogenic cell death. Under 1064 nm laser irradiation, MCPG enriched with SV, owing to doping, generates a local temperature gradient that activates PTEC and produces toxic reactive oxygen species (ROS). Hydroxyl radicals and oxygen are generated through peroxide and catalase-like processes. Increased oxygen levels alleviate tumor hypoxia, whereas hydrogen peroxide production from glycometabolism provides sufficient ROS for a cascade catalytic reaction, establishing a self-reinforcing positive mechanism. Density functional theory calculations demonstrated that vacancy defects effectively enhanced enzyme catalytic activity. Multimodal imaging-guided synergistic therapy not only damages tumor cells, but also elicits an antitumor immune response to inhibit tumor metastasis. This study offers novel insights into the cuproptosis/ferroptosis/apoptosis pathways of Cu-based PTEC nanozymes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信