{"title":"基于表面功能化可调谐光子晶体光栅的湿度传感器。","authors":"Hao Cui, Dingwen Hu, Tao Yang, Chan Huang, Zongyin Yang, Shurong Dong","doi":"10.1016/j.talanta.2025.128521","DOIUrl":null,"url":null,"abstract":"<p><p>Photonic crystal (PC)-based humidity sensors detect changes in humidity using periodic structural color variations and have significant potential in the humidity detection field. However, current technologies typically rely on observing these structural color changes with the human eye. The human eye has limited color discrimination, thus resulting in insufficient detection accuracy. Meanwhile, viewing angles and ambient lighting can also disrupt observations. Here, we propose a humidity sensor based on surface-functionalized tunable PC grating. The tunable PC grating consists of a 600 nm polystyrene (PS) microsphere PC and a humidity-sensitive hydrogel. As ambient humidity increases, the hydrophilic amide groups (-CONH<sub>2</sub>) inside the hydrogel interact with the hydrogen bonds between water molecules and triggers hydrogel swelling, exerts interfacial stress on the PS microsphere lattice, thus expanding the lattice spacing of the PS microspheres and causing a red shift in the reflected wavelength. Integrating the surface-functionalized tunable PC grating into a Czerny-Turner (C-T) optical system enables us to directly translate humidity into precise spectral shifts, overcoming the limitations of human eye-based observations. Experimental results demonstrate a strong linear response over the range of 24-94 % relative humidity (RH), as well as excellent repeatability and long-term stability. We provide an innovative solution for high-precision optical humidity sensing.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"296 ","pages":"128521"},"PeriodicalIF":6.1000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Humidity sensors based on surface-functionalized tunable photonic crystal grating.\",\"authors\":\"Hao Cui, Dingwen Hu, Tao Yang, Chan Huang, Zongyin Yang, Shurong Dong\",\"doi\":\"10.1016/j.talanta.2025.128521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photonic crystal (PC)-based humidity sensors detect changes in humidity using periodic structural color variations and have significant potential in the humidity detection field. However, current technologies typically rely on observing these structural color changes with the human eye. The human eye has limited color discrimination, thus resulting in insufficient detection accuracy. Meanwhile, viewing angles and ambient lighting can also disrupt observations. Here, we propose a humidity sensor based on surface-functionalized tunable PC grating. The tunable PC grating consists of a 600 nm polystyrene (PS) microsphere PC and a humidity-sensitive hydrogel. As ambient humidity increases, the hydrophilic amide groups (-CONH<sub>2</sub>) inside the hydrogel interact with the hydrogen bonds between water molecules and triggers hydrogel swelling, exerts interfacial stress on the PS microsphere lattice, thus expanding the lattice spacing of the PS microspheres and causing a red shift in the reflected wavelength. Integrating the surface-functionalized tunable PC grating into a Czerny-Turner (C-T) optical system enables us to directly translate humidity into precise spectral shifts, overcoming the limitations of human eye-based observations. Experimental results demonstrate a strong linear response over the range of 24-94 % relative humidity (RH), as well as excellent repeatability and long-term stability. We provide an innovative solution for high-precision optical humidity sensing.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"296 \",\"pages\":\"128521\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2026-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.128521\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128521","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Humidity sensors based on surface-functionalized tunable photonic crystal grating.
Photonic crystal (PC)-based humidity sensors detect changes in humidity using periodic structural color variations and have significant potential in the humidity detection field. However, current technologies typically rely on observing these structural color changes with the human eye. The human eye has limited color discrimination, thus resulting in insufficient detection accuracy. Meanwhile, viewing angles and ambient lighting can also disrupt observations. Here, we propose a humidity sensor based on surface-functionalized tunable PC grating. The tunable PC grating consists of a 600 nm polystyrene (PS) microsphere PC and a humidity-sensitive hydrogel. As ambient humidity increases, the hydrophilic amide groups (-CONH2) inside the hydrogel interact with the hydrogen bonds between water molecules and triggers hydrogel swelling, exerts interfacial stress on the PS microsphere lattice, thus expanding the lattice spacing of the PS microspheres and causing a red shift in the reflected wavelength. Integrating the surface-functionalized tunable PC grating into a Czerny-Turner (C-T) optical system enables us to directly translate humidity into precise spectral shifts, overcoming the limitations of human eye-based observations. Experimental results demonstrate a strong linear response over the range of 24-94 % relative humidity (RH), as well as excellent repeatability and long-term stability. We provide an innovative solution for high-precision optical humidity sensing.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.