Natalia O. Kalinina, Nadezhda A. Spechenkova, Michael E. Taliansky
{"title":"植物抗病毒抗性的生物技术途径:CRISPR-Cas还是RNA干扰?","authors":"Natalia O. Kalinina, Nadezhda A. Spechenkova, Michael E. Taliansky","doi":"10.1134/S0006297925600139","DOIUrl":null,"url":null,"abstract":"<p>Established genome editing technologies, such as CRISPR-Cas and RNA interference (RNAi), have significantly advanced research studies in nearly all fields of life sciences, including biotechnology and medicine, and have become increasingly in demand in plant biology. In the review, we present the main principles of the CRISPR-Cas and RNAi technologies and their application in model plants and crops for the control of viral diseases. The review explores the antiviral effects they provide, including direct suppression of genomes of DNA- and RNA-containing viruses and inhibition of activity of host genes that increase plant susceptibility to viruses. We also provide a detailed comparison of the effectiveness of CRISPR-Cas and RNAi methods in plant protection, as well as discuss their advantages and disadvantages, factors limiting their application in practice, and possible approaches to overcome such limitations.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"90 ).","pages":"804 - 817"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biotechnological Approaches to Plant Antiviral Resistance: CRISPR-Cas or RNA Interference?\",\"authors\":\"Natalia O. Kalinina, Nadezhda A. Spechenkova, Michael E. Taliansky\",\"doi\":\"10.1134/S0006297925600139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Established genome editing technologies, such as CRISPR-Cas and RNA interference (RNAi), have significantly advanced research studies in nearly all fields of life sciences, including biotechnology and medicine, and have become increasingly in demand in plant biology. In the review, we present the main principles of the CRISPR-Cas and RNAi technologies and their application in model plants and crops for the control of viral diseases. The review explores the antiviral effects they provide, including direct suppression of genomes of DNA- and RNA-containing viruses and inhibition of activity of host genes that increase plant susceptibility to viruses. We also provide a detailed comparison of the effectiveness of CRISPR-Cas and RNAi methods in plant protection, as well as discuss their advantages and disadvantages, factors limiting their application in practice, and possible approaches to overcome such limitations.</p>\",\"PeriodicalId\":483,\"journal\":{\"name\":\"Biochemistry (Moscow)\",\"volume\":\"90 ).\",\"pages\":\"804 - 817\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow)\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0006297925600139\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow)","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0006297925600139","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Biotechnological Approaches to Plant Antiviral Resistance: CRISPR-Cas or RNA Interference?
Established genome editing technologies, such as CRISPR-Cas and RNA interference (RNAi), have significantly advanced research studies in nearly all fields of life sciences, including biotechnology and medicine, and have become increasingly in demand in plant biology. In the review, we present the main principles of the CRISPR-Cas and RNAi technologies and their application in model plants and crops for the control of viral diseases. The review explores the antiviral effects they provide, including direct suppression of genomes of DNA- and RNA-containing viruses and inhibition of activity of host genes that increase plant susceptibility to viruses. We also provide a detailed comparison of the effectiveness of CRISPR-Cas and RNAi methods in plant protection, as well as discuss their advantages and disadvantages, factors limiting their application in practice, and possible approaches to overcome such limitations.
期刊介绍:
Biochemistry (Moscow) is the journal that includes research papers in all fields of biochemistry as well as biochemical aspects of molecular biology, bioorganic chemistry, microbiology, immunology, physiology, and biomedical sciences. Coverage also extends to new experimental methods in biochemistry, theoretical contributions of biochemical importance, reviews of contemporary biochemical topics, and mini-reviews (News in Biochemistry).