4H-SiC同质结光控突触实现高温神经形态计算。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-04 DOI:10.1002/smll.202504084
Xiao Liu, Zhen Shi, Mingxuan Bu, Xusheng Wang, Wensheng Yan, Xiaodong Pi
{"title":"4H-SiC同质结光控突触实现高温神经形态计算。","authors":"Xiao Liu, Zhen Shi, Mingxuan Bu, Xusheng Wang, Wensheng Yan, Xiaodong Pi","doi":"10.1002/smll.202504084","DOIUrl":null,"url":null,"abstract":"<p><p>Ultraviolet optoelectronic synapses (UVOSs) that can simultaneously perceive, memorize, and preprocess UV light signals hold great promise for applications in secure communication, fire warning, and planetary exploration. However, the thermal instability of current UVOSs significantly hinders their practical applications in harsh environments. In this work, high-temperature-resistant synaptic devices based on the p-n 4H-SiC homojunctions are demonstrated. The efficient separation of the photogenerated carriers at the homojunction interface induces a pronounced photogating effect, enabling robust light-stimulated synaptic behavior even at 350 °C in ambient air without any encapsulation. The maximum operating temperature of these devices notably exceeds that reported for other UVOSs. Leveraging an array of these devices, information encryption and image learning-memory are emulated at 350 °C. Moreover, the 4H-SiC photogated synapse array recognizes handwritten digits with up to 95% accuracy in artificial neural network (ANN) simulations. This study provides a simple yet effective strategy for developing UVOSs for high-temperature neuromorphic computing.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2504084"},"PeriodicalIF":12.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4H-SiC Homojunction Photogated Synapses Enabling High-Temperature Neuromorphic Computing.\",\"authors\":\"Xiao Liu, Zhen Shi, Mingxuan Bu, Xusheng Wang, Wensheng Yan, Xiaodong Pi\",\"doi\":\"10.1002/smll.202504084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultraviolet optoelectronic synapses (UVOSs) that can simultaneously perceive, memorize, and preprocess UV light signals hold great promise for applications in secure communication, fire warning, and planetary exploration. However, the thermal instability of current UVOSs significantly hinders their practical applications in harsh environments. In this work, high-temperature-resistant synaptic devices based on the p-n 4H-SiC homojunctions are demonstrated. The efficient separation of the photogenerated carriers at the homojunction interface induces a pronounced photogating effect, enabling robust light-stimulated synaptic behavior even at 350 °C in ambient air without any encapsulation. The maximum operating temperature of these devices notably exceeds that reported for other UVOSs. Leveraging an array of these devices, information encryption and image learning-memory are emulated at 350 °C. Moreover, the 4H-SiC photogated synapse array recognizes handwritten digits with up to 95% accuracy in artificial neural network (ANN) simulations. This study provides a simple yet effective strategy for developing UVOSs for high-temperature neuromorphic computing.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\" \",\"pages\":\"e2504084\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202504084\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202504084","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

紫外光电突触(UVOSs)可以同时感知、记忆和预处理紫外光信号,在安全通信、火灾预警和行星探测等领域具有很大的应用前景。然而,当前uvos的热不稳定性严重阻碍了其在恶劣环境中的实际应用。在这项工作中,展示了基于p-n 4H-SiC同质结的耐高温突触器件。光产生的载流子在同质结界面的有效分离诱导了明显的光门效应,即使在350°C的环境空气中也能在没有任何封装的情况下实现强大的光刺激突触行为。这些器件的最高工作温度明显超过其他uvos的报道。利用这些设备阵列,在350°C下模拟了信息加密和图像学习记忆。此外,在人工神经网络(ANN)模拟中,4H-SiC光控突触阵列识别手写数字的准确率高达95%。该研究为开发用于高温神经形态计算的UVOSs提供了一种简单而有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4H-SiC Homojunction Photogated Synapses Enabling High-Temperature Neuromorphic Computing.

Ultraviolet optoelectronic synapses (UVOSs) that can simultaneously perceive, memorize, and preprocess UV light signals hold great promise for applications in secure communication, fire warning, and planetary exploration. However, the thermal instability of current UVOSs significantly hinders their practical applications in harsh environments. In this work, high-temperature-resistant synaptic devices based on the p-n 4H-SiC homojunctions are demonstrated. The efficient separation of the photogenerated carriers at the homojunction interface induces a pronounced photogating effect, enabling robust light-stimulated synaptic behavior even at 350 °C in ambient air without any encapsulation. The maximum operating temperature of these devices notably exceeds that reported for other UVOSs. Leveraging an array of these devices, information encryption and image learning-memory are emulated at 350 °C. Moreover, the 4H-SiC photogated synapse array recognizes handwritten digits with up to 95% accuracy in artificial neural network (ANN) simulations. This study provides a simple yet effective strategy for developing UVOSs for high-temperature neuromorphic computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信