可活化酶纳米平台结合微针贴片缓解肿瘤缺氧增强光动力治疗。

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yashi Li, Youyan Li, Gang He, Xingxing Li, Rui Ding, Ruhan Yan, Jing Lin, Peng Huang
{"title":"可活化酶纳米平台结合微针贴片缓解肿瘤缺氧增强光动力治疗。","authors":"Yashi Li, Youyan Li, Gang He, Xingxing Li, Rui Ding, Ruhan Yan, Jing Lin, Peng Huang","doi":"10.1002/adma.202504258","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical advancement of photodynamic therapy (PDT) faces entrenched impediments, particularly the suboptimal solubility of hydrophobic photosensitizers (PSs) and tumor-associated hypoxia. Herein, a universally applicable, carrier-free nanotherapeutic platform is devised in which catalase (CAT) functions dually as a biocatalytic oxygenator and a biocompatible scaffold for PSs encapsulation. Through self-assembly with diverse hydrophobic PSs-including 2-(1-hexyloxyethyl)-2-divinyl-pyropheophorbide-a (HPPH), chlorin e6 (Ce6), and zinc (II)-phthalocyanine (ZnPc)-CAT forms uniform and stable PS@CAT nanoparticles (NPs), obviating the necessity for supplementary nanocarriers. These nanostructures are embedded within microneedle (MN) patches, facilitating minimally invasive, spatially targeted transdermal administration. The PSs bind to the hydrophobic pocket of CAT within NPs, temporarily suppressing its bioactivity, which is restored upon NPs disassembly in the acidic tumor microenvironment (TME). This pH-responsive \"OFF-to-ON\" mechanism orchestrates the synchronized release of PSs and reactivation of CAT, which catalyzes endogenous hydrogen peroxide (H₂O₂) to generate oxygen (O<sub>2</sub>), alleviating hypoxia and augmenting O<sub>2</sub> availability for PDT. In vivo validation in a 4T1 murine mammary carcinoma model corroborated this approach's therapeutic superiority and biocompatibility. Collectively, the findings delineate a minimalist, multifunctional strategy to simultaneously enhance the bioavailability of PSs and overcome hypoxia in PDT for more efficacious oncologic therapy.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2504258"},"PeriodicalIF":26.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activatable Enzymatic Nanoplatform Incorporated into Microneedle Patch for Relieving Tumor Hypoxia Augmented Photodynamic Therapy.\",\"authors\":\"Yashi Li, Youyan Li, Gang He, Xingxing Li, Rui Ding, Ruhan Yan, Jing Lin, Peng Huang\",\"doi\":\"10.1002/adma.202504258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The clinical advancement of photodynamic therapy (PDT) faces entrenched impediments, particularly the suboptimal solubility of hydrophobic photosensitizers (PSs) and tumor-associated hypoxia. Herein, a universally applicable, carrier-free nanotherapeutic platform is devised in which catalase (CAT) functions dually as a biocatalytic oxygenator and a biocompatible scaffold for PSs encapsulation. Through self-assembly with diverse hydrophobic PSs-including 2-(1-hexyloxyethyl)-2-divinyl-pyropheophorbide-a (HPPH), chlorin e6 (Ce6), and zinc (II)-phthalocyanine (ZnPc)-CAT forms uniform and stable PS@CAT nanoparticles (NPs), obviating the necessity for supplementary nanocarriers. These nanostructures are embedded within microneedle (MN) patches, facilitating minimally invasive, spatially targeted transdermal administration. The PSs bind to the hydrophobic pocket of CAT within NPs, temporarily suppressing its bioactivity, which is restored upon NPs disassembly in the acidic tumor microenvironment (TME). This pH-responsive \\\"OFF-to-ON\\\" mechanism orchestrates the synchronized release of PSs and reactivation of CAT, which catalyzes endogenous hydrogen peroxide (H₂O₂) to generate oxygen (O<sub>2</sub>), alleviating hypoxia and augmenting O<sub>2</sub> availability for PDT. In vivo validation in a 4T1 murine mammary carcinoma model corroborated this approach's therapeutic superiority and biocompatibility. Collectively, the findings delineate a minimalist, multifunctional strategy to simultaneously enhance the bioavailability of PSs and overcome hypoxia in PDT for more efficacious oncologic therapy.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2504258\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202504258\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202504258","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光动力疗法(PDT)的临床进展面临着根深蒂固的障碍,特别是疏水性光敏剂(ps)的次优溶解度和肿瘤相关的缺氧。本文设计了一种普遍适用的无载体纳米治疗平台,其中过氧化氢酶(CAT)具有生物催化氧合剂和生物相容性支架的双重功能。通过与各种疏水性pss(包括2-(1-己氧乙基)-2-二乙烯基-焦磷-a (HPPH)、氯e6 (Ce6)和锌(II)-酞菁(ZnPc))的自组装,cat形成均匀稳定的PS@CAT纳米粒子(NPs),从而避免了补充纳米载体的需要。这些纳米结构嵌入微针(MN)贴片中,促进微创、空间靶向的透皮给药。ps与NPs内CAT的疏水性口袋结合,暂时抑制其生物活性,当NPs在酸性肿瘤微环境(TME)中分解后,生物活性恢复。这种ph响应的“OFF-to-ON”机制协调了PSs的同步释放和CAT的再激活,从而催化内源性过氧化氢(H₂O₂)产生氧气(O2),缓解缺氧并增加PDT的氧气可用性。在4T1小鼠乳腺癌模型的体内验证证实了该方法的治疗优势和生物相容性。总的来说,这些发现描述了一种极简的多功能策略,可以同时提高PSs的生物利用度并克服PDT中的缺氧,从而实现更有效的肿瘤治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activatable Enzymatic Nanoplatform Incorporated into Microneedle Patch for Relieving Tumor Hypoxia Augmented Photodynamic Therapy.

The clinical advancement of photodynamic therapy (PDT) faces entrenched impediments, particularly the suboptimal solubility of hydrophobic photosensitizers (PSs) and tumor-associated hypoxia. Herein, a universally applicable, carrier-free nanotherapeutic platform is devised in which catalase (CAT) functions dually as a biocatalytic oxygenator and a biocompatible scaffold for PSs encapsulation. Through self-assembly with diverse hydrophobic PSs-including 2-(1-hexyloxyethyl)-2-divinyl-pyropheophorbide-a (HPPH), chlorin e6 (Ce6), and zinc (II)-phthalocyanine (ZnPc)-CAT forms uniform and stable PS@CAT nanoparticles (NPs), obviating the necessity for supplementary nanocarriers. These nanostructures are embedded within microneedle (MN) patches, facilitating minimally invasive, spatially targeted transdermal administration. The PSs bind to the hydrophobic pocket of CAT within NPs, temporarily suppressing its bioactivity, which is restored upon NPs disassembly in the acidic tumor microenvironment (TME). This pH-responsive "OFF-to-ON" mechanism orchestrates the synchronized release of PSs and reactivation of CAT, which catalyzes endogenous hydrogen peroxide (H₂O₂) to generate oxygen (O2), alleviating hypoxia and augmenting O2 availability for PDT. In vivo validation in a 4T1 murine mammary carcinoma model corroborated this approach's therapeutic superiority and biocompatibility. Collectively, the findings delineate a minimalist, multifunctional strategy to simultaneously enhance the bioavailability of PSs and overcome hypoxia in PDT for more efficacious oncologic therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信