基于界面固有韧性和力学耗散协同作用的导热液下胶。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiangchao Xie, Jianfeng Fan, Chen Zeng, Ke Ou, Yabiao Ma, Gaohong Lv, Jianbin Xu, Rong Sun and Xiaoliang Zeng
{"title":"基于界面固有韧性和力学耗散协同作用的导热液下胶。","authors":"Xiangchao Xie, Jianfeng Fan, Chen Zeng, Ke Ou, Yabiao Ma, Gaohong Lv, Jianbin Xu, Rong Sun and Xiaoliang Zeng","doi":"10.1039/D5MH01049G","DOIUrl":null,"url":null,"abstract":"<p >An under-liquid adhesive combining strong adhesion and enhanced thermal conductivity is crucial for applications like data center liquid cooling, underwater sensors, and batteries. However, weak and unstable adhesion in an under-liquid environment greatly limits thermal stability and reliability. To address this challenge, we report a strategy to achieve strong adhesion of a polydimethylsiloxane/aluminum adhesive through integrating tough dissipative composite matrices and strong interfacial linkages. The polydimethylsiloxane/aluminum adhesive shows excellent adhesion properties (an adhesion strength of 8.05 ± 0.21 MPa and an adhesion energy of 2160.20 ± 197.19 J m<small><sup>−2</sup></small>). This is attributed to strong covalent bonds that prevent propagation and extension, while dynamic hydrogen bonds undergo sequential rupture and reconstruction and induce crack blunting, synergistically improving the intrinsic interfacial toughness and mechanical dissipation. Notably, the adhesive demonstrates excellent durability and effectiveness after 1000 h of immersion in a 100 °C coolant. Highly filled spherical aluminum particles form a thermally conductive network in the polydimethylsiloxane matrix, achieving a thermal conductivity (4.30 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>). Combined with the liquid cooling strategy, the adhesive achieves a heat transfer coefficient of 2941.17 J m<small><sup>−2</sup></small> K<small><sup>−1</sup></small> s<small><sup>−1</sup></small>, which has bright performance in the existing materials. This work presents a generalizable strategy for engineering stable, strong and thermally conductive adhesives, with significant potential for under-liquid applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 18","pages":" 7606-7617"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermally conductive under-liquid adhesives via the synergistic effect of intrinsic interfacial toughness and mechanical dissipation†\",\"authors\":\"Xiangchao Xie, Jianfeng Fan, Chen Zeng, Ke Ou, Yabiao Ma, Gaohong Lv, Jianbin Xu, Rong Sun and Xiaoliang Zeng\",\"doi\":\"10.1039/D5MH01049G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An under-liquid adhesive combining strong adhesion and enhanced thermal conductivity is crucial for applications like data center liquid cooling, underwater sensors, and batteries. However, weak and unstable adhesion in an under-liquid environment greatly limits thermal stability and reliability. To address this challenge, we report a strategy to achieve strong adhesion of a polydimethylsiloxane/aluminum adhesive through integrating tough dissipative composite matrices and strong interfacial linkages. The polydimethylsiloxane/aluminum adhesive shows excellent adhesion properties (an adhesion strength of 8.05 ± 0.21 MPa and an adhesion energy of 2160.20 ± 197.19 J m<small><sup>−2</sup></small>). This is attributed to strong covalent bonds that prevent propagation and extension, while dynamic hydrogen bonds undergo sequential rupture and reconstruction and induce crack blunting, synergistically improving the intrinsic interfacial toughness and mechanical dissipation. Notably, the adhesive demonstrates excellent durability and effectiveness after 1000 h of immersion in a 100 °C coolant. Highly filled spherical aluminum particles form a thermally conductive network in the polydimethylsiloxane matrix, achieving a thermal conductivity (4.30 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>). Combined with the liquid cooling strategy, the adhesive achieves a heat transfer coefficient of 2941.17 J m<small><sup>−2</sup></small> K<small><sup>−1</sup></small> s<small><sup>−1</sup></small>, which has bright performance in the existing materials. This work presents a generalizable strategy for engineering stable, strong and thermally conductive adhesives, with significant potential for under-liquid applications.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 18\",\"pages\":\" 7606-7617\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh01049g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh01049g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一种结合了强附着力和增强导热性的液下粘合剂对于数据中心液体冷却、水下传感器和电池等应用至关重要。然而,在液体环境下,弱而不稳定的粘附极大地限制了热稳定性和可靠性。为了解决这一挑战,我们报告了一种通过整合坚韧耗散复合基质和强界面连接来实现聚二甲基硅氧烷/铝粘合剂强粘附的策略。聚二甲基硅氧烷/铝胶粘剂具有良好的粘接性能(粘接强度为8.05±0.21 MPa,粘接能为2160.20±197.19 J - m-2)。这是由于强大的共价键阻止了扩展和扩展,而动态氢键则进行顺序断裂和重建,并诱导裂纹钝化,协同提高了固有界面韧性和机械耗散。值得注意的是,粘合剂在100°C冷却剂中浸泡1000小时后显示出优异的耐久性和有效性。高度填充的球形铝颗粒在聚二甲基硅氧烷基体中形成导热网络,实现了4.30 W m-1 K-1的导热系数。结合液冷策略,该胶粘剂的换热系数达到2941.17 J m-2 K-1 s-1,在现有材料中具有较好的性能。这项工作提出了一种工程稳定、强、导热胶粘剂的通用策略,具有在液体下应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermally conductive under-liquid adhesives via the synergistic effect of intrinsic interfacial toughness and mechanical dissipation†

Thermally conductive under-liquid adhesives via the synergistic effect of intrinsic interfacial toughness and mechanical dissipation†

An under-liquid adhesive combining strong adhesion and enhanced thermal conductivity is crucial for applications like data center liquid cooling, underwater sensors, and batteries. However, weak and unstable adhesion in an under-liquid environment greatly limits thermal stability and reliability. To address this challenge, we report a strategy to achieve strong adhesion of a polydimethylsiloxane/aluminum adhesive through integrating tough dissipative composite matrices and strong interfacial linkages. The polydimethylsiloxane/aluminum adhesive shows excellent adhesion properties (an adhesion strength of 8.05 ± 0.21 MPa and an adhesion energy of 2160.20 ± 197.19 J m−2). This is attributed to strong covalent bonds that prevent propagation and extension, while dynamic hydrogen bonds undergo sequential rupture and reconstruction and induce crack blunting, synergistically improving the intrinsic interfacial toughness and mechanical dissipation. Notably, the adhesive demonstrates excellent durability and effectiveness after 1000 h of immersion in a 100 °C coolant. Highly filled spherical aluminum particles form a thermally conductive network in the polydimethylsiloxane matrix, achieving a thermal conductivity (4.30 W m−1 K−1). Combined with the liquid cooling strategy, the adhesive achieves a heat transfer coefficient of 2941.17 J m−2 K−1 s−1, which has bright performance in the existing materials. This work presents a generalizable strategy for engineering stable, strong and thermally conductive adhesives, with significant potential for under-liquid applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信