kagome铁磁体中太赫兹频率轨道耦合磁振子的发现

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mengqian Che, Weizhao Chen, Maoyuan Wang, F. Michael Bartram, Liangyang Liu, Xuebin Dong, Jinjin Liu, Yidian Li, Hao Lin, Zhiwei Wang, Enke Liu, Yugui Yao, Zhe Yuan, Guang-Ming Zhang, Luyi Yang
{"title":"kagome铁磁体中太赫兹频率轨道耦合磁振子的发现","authors":"Mengqian Che,&nbsp;Weizhao Chen,&nbsp;Maoyuan Wang,&nbsp;F. Michael Bartram,&nbsp;Liangyang Liu,&nbsp;Xuebin Dong,&nbsp;Jinjin Liu,&nbsp;Yidian Li,&nbsp;Hao Lin,&nbsp;Zhiwei Wang,&nbsp;Enke Liu,&nbsp;Yugui Yao,&nbsp;Zhe Yuan,&nbsp;Guang-Ming Zhang,&nbsp;Luyi Yang","doi":"10.1126/sciadv.adw1182","DOIUrl":null,"url":null,"abstract":"<div >In ferromagnetic materials, magnons—quanta of spin waves—typically resonate in the gigahertz range. Beyond conventional magnons, while theoretical studies have predicted magnons associated with orbital magnetic moments, their direct observation has remained challenging. Here, we present the discovery of two distinct terahertz orbitally coupled magnon resonances in the topological kagome ferromagnet Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub>. Using time-resolved Kerr rotation spectroscopy, we pinpoint two magnon resonances at 0.61 and 0.49 terahertz at 6 kelvin, surpassing all previously reported magnon resonances in ferromagnets due to strong magnetocrystalline anisotropy. These dual modes originate from the strong coupling of localized spin and orbital magnetic moments. These findings unveil an unconventional category of magnons in a ferromagnet stemming from orbital magnetic moments and position Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> as a promising candidate for high-speed terahertz spintronic applications.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 27","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw1182","citationCount":"0","resultStr":"{\"title\":\"Discovery of terahertz-frequency orbitally coupled magnons in a kagome ferromagnet\",\"authors\":\"Mengqian Che,&nbsp;Weizhao Chen,&nbsp;Maoyuan Wang,&nbsp;F. Michael Bartram,&nbsp;Liangyang Liu,&nbsp;Xuebin Dong,&nbsp;Jinjin Liu,&nbsp;Yidian Li,&nbsp;Hao Lin,&nbsp;Zhiwei Wang,&nbsp;Enke Liu,&nbsp;Yugui Yao,&nbsp;Zhe Yuan,&nbsp;Guang-Ming Zhang,&nbsp;Luyi Yang\",\"doi\":\"10.1126/sciadv.adw1182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >In ferromagnetic materials, magnons—quanta of spin waves—typically resonate in the gigahertz range. Beyond conventional magnons, while theoretical studies have predicted magnons associated with orbital magnetic moments, their direct observation has remained challenging. Here, we present the discovery of two distinct terahertz orbitally coupled magnon resonances in the topological kagome ferromagnet Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub>. Using time-resolved Kerr rotation spectroscopy, we pinpoint two magnon resonances at 0.61 and 0.49 terahertz at 6 kelvin, surpassing all previously reported magnon resonances in ferromagnets due to strong magnetocrystalline anisotropy. These dual modes originate from the strong coupling of localized spin and orbital magnetic moments. These findings unveil an unconventional category of magnons in a ferromagnet stemming from orbital magnetic moments and position Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> as a promising candidate for high-speed terahertz spintronic applications.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 27\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw1182\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw1182\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw1182","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在铁磁材料中,磁振子——自旋波的量子——通常在千兆赫兹范围内共振。除了传统的磁振子,虽然理论研究已经预测了磁振子与轨道磁矩的关系,但它们的直接观测仍然具有挑战性。在这里,我们提出了在拓扑kagome铁磁体Co3Sn2S2中发现两个不同的太赫兹轨道耦合磁振子共振。利用时间分辨克尔旋转光谱,我们确定了两个磁振子共振在0.61和0.49太赫兹在6开尔文,超过所有先前报道的磁振子共振在铁磁体中,由于强磁晶各向异性。这些双模源于局域自旋和轨道磁矩的强耦合。这些发现揭示了铁磁体中由轨道磁矩产生的非常规磁振子类别,并将Co3Sn2S2定位为高速太赫兹自旋电子应用的有希望的候选对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discovery of terahertz-frequency orbitally coupled magnons in a kagome ferromagnet

Discovery of terahertz-frequency orbitally coupled magnons in a kagome ferromagnet
In ferromagnetic materials, magnons—quanta of spin waves—typically resonate in the gigahertz range. Beyond conventional magnons, while theoretical studies have predicted magnons associated with orbital magnetic moments, their direct observation has remained challenging. Here, we present the discovery of two distinct terahertz orbitally coupled magnon resonances in the topological kagome ferromagnet Co3Sn2S2. Using time-resolved Kerr rotation spectroscopy, we pinpoint two magnon resonances at 0.61 and 0.49 terahertz at 6 kelvin, surpassing all previously reported magnon resonances in ferromagnets due to strong magnetocrystalline anisotropy. These dual modes originate from the strong coupling of localized spin and orbital magnetic moments. These findings unveil an unconventional category of magnons in a ferromagnet stemming from orbital magnetic moments and position Co3Sn2S2 as a promising candidate for high-speed terahertz spintronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信