多组学整合揭示乳腺癌新辅助治疗反应的亚型特异性预测因子

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zongchao Mo, Mei Yang, Zhihan Zhu, Minghao Wang, Haoyu Wang, Zhanye Zhang, Shanshan Lyu, Fangping Xu, Haixia Shang, Huan Lin, Zeyan Xu, Suyun Li, Xiaobo Chen, Kun Wang, Changhong Liang, Jiguang Wang, Zaiyi Liu
{"title":"多组学整合揭示乳腺癌新辅助治疗反应的亚型特异性预测因子","authors":"Zongchao Mo,&nbsp;Mei Yang,&nbsp;Zhihan Zhu,&nbsp;Minghao Wang,&nbsp;Haoyu Wang,&nbsp;Zhanye Zhang,&nbsp;Shanshan Lyu,&nbsp;Fangping Xu,&nbsp;Haixia Shang,&nbsp;Huan Lin,&nbsp;Zeyan Xu,&nbsp;Suyun Li,&nbsp;Xiaobo Chen,&nbsp;Kun Wang,&nbsp;Changhong Liang,&nbsp;Jiguang Wang,&nbsp;Zaiyi Liu","doi":"10.1126/sciadv.adu1521","DOIUrl":null,"url":null,"abstract":"<div >Neoadjuvant therapy has been widely used in breast cancer, but treatment response varies among individuals. We conducted multiomic profiling on tumor samples from 149 Chinese patients with breast cancer across ER<sup>−</sup>HER2<sup>+</sup>, ER<sup>+</sup>HER2<sup>+</sup>, and ER<sup>−</sup>HER2<sup>−</sup> subtypes, categorizing outcomes as pathologic complete response (pCR; <i>n</i> = 81) or residual disease (RD; <i>n</i> = 68). We identified distinct molecular features linked to pCR in each subtype: elevated cell proliferation in patients with ER<sup>−</sup>HER2<sup>−</sup> pCR, higher <i>CDKN2A</i> methylation in patients with ER<sup>−</sup>HER2<sup>−</sup> RD, increased <i>KIT</i> methylation in patients with ER<sup>−</sup>HER2<sup>+</sup> RD, and <i>MAP4K1</i> hypermethylation in patients with ER<sup>+</sup>HER2<sup>+</sup> RD. These findings were subsequently validated in independent datasets. By integrating clinical and multiomic data, we developed MOPCR, a subtype-specific machine learning model that outperformed single-omic approaches in predicting treatment response. MOPCR demonstrated potential generalizability across cohorts and provided preliminary stratification of patient subgroups with higher pCR probability, offering valuable insights for precision cancer management.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 27","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu1521","citationCount":"0","resultStr":"{\"title\":\"Multiomic integration reveals subtype-specific predictors of neoadjuvant treatment response in breast cancer\",\"authors\":\"Zongchao Mo,&nbsp;Mei Yang,&nbsp;Zhihan Zhu,&nbsp;Minghao Wang,&nbsp;Haoyu Wang,&nbsp;Zhanye Zhang,&nbsp;Shanshan Lyu,&nbsp;Fangping Xu,&nbsp;Haixia Shang,&nbsp;Huan Lin,&nbsp;Zeyan Xu,&nbsp;Suyun Li,&nbsp;Xiaobo Chen,&nbsp;Kun Wang,&nbsp;Changhong Liang,&nbsp;Jiguang Wang,&nbsp;Zaiyi Liu\",\"doi\":\"10.1126/sciadv.adu1521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Neoadjuvant therapy has been widely used in breast cancer, but treatment response varies among individuals. We conducted multiomic profiling on tumor samples from 149 Chinese patients with breast cancer across ER<sup>−</sup>HER2<sup>+</sup>, ER<sup>+</sup>HER2<sup>+</sup>, and ER<sup>−</sup>HER2<sup>−</sup> subtypes, categorizing outcomes as pathologic complete response (pCR; <i>n</i> = 81) or residual disease (RD; <i>n</i> = 68). We identified distinct molecular features linked to pCR in each subtype: elevated cell proliferation in patients with ER<sup>−</sup>HER2<sup>−</sup> pCR, higher <i>CDKN2A</i> methylation in patients with ER<sup>−</sup>HER2<sup>−</sup> RD, increased <i>KIT</i> methylation in patients with ER<sup>−</sup>HER2<sup>+</sup> RD, and <i>MAP4K1</i> hypermethylation in patients with ER<sup>+</sup>HER2<sup>+</sup> RD. These findings were subsequently validated in independent datasets. By integrating clinical and multiomic data, we developed MOPCR, a subtype-specific machine learning model that outperformed single-omic approaches in predicting treatment response. MOPCR demonstrated potential generalizability across cohorts and provided preliminary stratification of patient subgroups with higher pCR probability, offering valuable insights for precision cancer management.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 27\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu1521\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu1521\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu1521","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

新辅助治疗已广泛应用于乳腺癌,但治疗反应因人而异。我们对149名中国乳腺癌患者的肿瘤样本进行了ER - HER2+、ER+HER2+和ER - HER2 -亚型的多组学分析,将结果分类为病理完全缓解(pCR;n = 81)或残留病变(RD;n = 68)。我们确定了每种亚型中与pCR相关的不同分子特征:ER - HER2 - pCR患者细胞增殖升高,ER - HER2 - RD患者CDKN2A甲基化升高,ER - HER2+ RD患者KIT甲基化升高,ER+HER2+ RD患者MAP4K1超甲基化。这些发现随后在独立数据集中得到验证。通过整合临床和多组学数据,我们开发了MOPCR,这是一种亚型特异性机器学习模型,在预测治疗反应方面优于单组学方法。MOPCR显示了跨队列的潜在普遍性,并提供了具有更高pCR概率的患者亚组的初步分层,为精确的癌症管理提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiomic integration reveals subtype-specific predictors of neoadjuvant treatment response in breast cancer

Multiomic integration reveals subtype-specific predictors of neoadjuvant treatment response in breast cancer
Neoadjuvant therapy has been widely used in breast cancer, but treatment response varies among individuals. We conducted multiomic profiling on tumor samples from 149 Chinese patients with breast cancer across ERHER2+, ER+HER2+, and ERHER2 subtypes, categorizing outcomes as pathologic complete response (pCR; n = 81) or residual disease (RD; n = 68). We identified distinct molecular features linked to pCR in each subtype: elevated cell proliferation in patients with ERHER2 pCR, higher CDKN2A methylation in patients with ERHER2 RD, increased KIT methylation in patients with ERHER2+ RD, and MAP4K1 hypermethylation in patients with ER+HER2+ RD. These findings were subsequently validated in independent datasets. By integrating clinical and multiomic data, we developed MOPCR, a subtype-specific machine learning model that outperformed single-omic approaches in predicting treatment response. MOPCR demonstrated potential generalizability across cohorts and provided preliminary stratification of patient subgroups with higher pCR probability, offering valuable insights for precision cancer management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信