公用事业的分析和人工智能:解锁效率和可靠性

Amanda Mastrosimone, Andrew Biondi
{"title":"公用事业的分析和人工智能:解锁效率和可靠性","authors":"Amanda Mastrosimone,&nbsp;Andrew Biondi","doi":"10.1002/gas.22472","DOIUrl":null,"url":null,"abstract":"<p>The utility industry is facing challenges to increase operational efficiency, reduce costs, enhance reliability, and integrate renewable and distributed energy resources (DERs) onto the grid. Utilities are experimenting with approaches to intelligently use the vast amount of data they have using advanced analytics, artificial intelligence (AI), and machine learning (ML) techniques.</p>","PeriodicalId":100259,"journal":{"name":"Climate and Energy","volume":"42 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytics and AI for Utilities: Unlocking Efficiency and Reliability\",\"authors\":\"Amanda Mastrosimone,&nbsp;Andrew Biondi\",\"doi\":\"10.1002/gas.22472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The utility industry is facing challenges to increase operational efficiency, reduce costs, enhance reliability, and integrate renewable and distributed energy resources (DERs) onto the grid. Utilities are experimenting with approaches to intelligently use the vast amount of data they have using advanced analytics, artificial intelligence (AI), and machine learning (ML) techniques.</p>\",\"PeriodicalId\":100259,\"journal\":{\"name\":\"Climate and Energy\",\"volume\":\"42 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gas.22472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate and Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gas.22472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

公用事业行业正面临着提高运营效率、降低成本、提高可靠性以及将可再生能源和分布式能源(DERs)整合到电网中的挑战。公用事业公司正在尝试各种方法,通过高级分析、人工智能(AI)和机器学习(ML)技术,智能地利用他们拥有的大量数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytics and AI for Utilities: Unlocking Efficiency and Reliability

The utility industry is facing challenges to increase operational efficiency, reduce costs, enhance reliability, and integrate renewable and distributed energy resources (DERs) onto the grid. Utilities are experimenting with approaches to intelligently use the vast amount of data they have using advanced analytics, artificial intelligence (AI), and machine learning (ML) techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信