Mohib Ullah;Yajuan Guan;Yun Yu;Sanjay K. Chaudhary;Juan C. Vasquez;Josep M. Guerrero
{"title":"大型风力发电厂的动态性能和电能质量:挑战、不断发展的电网规范和建议的解决方案综述","authors":"Mohib Ullah;Yajuan Guan;Yun Yu;Sanjay K. Chaudhary;Juan C. Vasquez;Josep M. Guerrero","doi":"10.1109/OJPEL.2025.3582012","DOIUrl":null,"url":null,"abstract":"In the current transition of power industry from conventional sources to renewable energy sources, wind power generation is becoming one of the key sources of electrical energy. Although the development of wind power plants (WPPs) has made a significant contribution to addressing the demand for clean and cheap energy, the integration of large-scale WPPs introduces a series of technical challenges to power system operations. These challenges involved control, protection, and adherence to specified power quality standards. Particularly, power quality plays a vital role in utility systems and industries having direct technical and economic impact on both power consumers and suppliers. To tackle such issues, various grid codes have been initiated by regulation authorities. Moreover, different ancillary devices and control approaches have been adopted to comply with the established grid code. This article aims to review the state-of-the-art research and progress, while considering the main challenges related to dynamic performance and power quality enhancement of emerging grid-forming wind power plants. Various topologies of wind energy conversion systems (WECSs) are examined and compared, and their control strategies are investigated. A comprehensive review on power quality and dynamic response issues caused by large-scale wind power integration is presented. Moreover, the evolving grid code requirements for grid-connected WPPs in most leading countries including Denmark, U.K., Australia, Germany, and the USA are analyzed and compared. Furthermore, the improvement approaches proposed in the literature are investigated and classified on different basis and their pros and cons are discussed. A brief discussion on the solutions and future directions is presented. Finally, some conclusive considerations about the overall study are provided.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"1148-1173"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045996","citationCount":"0","resultStr":"{\"title\":\"Dynamic Performance and Power Quality of Large-Scale Wind Power Plants: A Review on Challenges, Evolving Grid Code, and Proposed Solutions\",\"authors\":\"Mohib Ullah;Yajuan Guan;Yun Yu;Sanjay K. Chaudhary;Juan C. Vasquez;Josep M. Guerrero\",\"doi\":\"10.1109/OJPEL.2025.3582012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current transition of power industry from conventional sources to renewable energy sources, wind power generation is becoming one of the key sources of electrical energy. Although the development of wind power plants (WPPs) has made a significant contribution to addressing the demand for clean and cheap energy, the integration of large-scale WPPs introduces a series of technical challenges to power system operations. These challenges involved control, protection, and adherence to specified power quality standards. Particularly, power quality plays a vital role in utility systems and industries having direct technical and economic impact on both power consumers and suppliers. To tackle such issues, various grid codes have been initiated by regulation authorities. Moreover, different ancillary devices and control approaches have been adopted to comply with the established grid code. This article aims to review the state-of-the-art research and progress, while considering the main challenges related to dynamic performance and power quality enhancement of emerging grid-forming wind power plants. Various topologies of wind energy conversion systems (WECSs) are examined and compared, and their control strategies are investigated. A comprehensive review on power quality and dynamic response issues caused by large-scale wind power integration is presented. Moreover, the evolving grid code requirements for grid-connected WPPs in most leading countries including Denmark, U.K., Australia, Germany, and the USA are analyzed and compared. Furthermore, the improvement approaches proposed in the literature are investigated and classified on different basis and their pros and cons are discussed. A brief discussion on the solutions and future directions is presented. Finally, some conclusive considerations about the overall study are provided.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":\"6 \",\"pages\":\"1148-1173\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045996\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11045996/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11045996/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic Performance and Power Quality of Large-Scale Wind Power Plants: A Review on Challenges, Evolving Grid Code, and Proposed Solutions
In the current transition of power industry from conventional sources to renewable energy sources, wind power generation is becoming one of the key sources of electrical energy. Although the development of wind power plants (WPPs) has made a significant contribution to addressing the demand for clean and cheap energy, the integration of large-scale WPPs introduces a series of technical challenges to power system operations. These challenges involved control, protection, and adherence to specified power quality standards. Particularly, power quality plays a vital role in utility systems and industries having direct technical and economic impact on both power consumers and suppliers. To tackle such issues, various grid codes have been initiated by regulation authorities. Moreover, different ancillary devices and control approaches have been adopted to comply with the established grid code. This article aims to review the state-of-the-art research and progress, while considering the main challenges related to dynamic performance and power quality enhancement of emerging grid-forming wind power plants. Various topologies of wind energy conversion systems (WECSs) are examined and compared, and their control strategies are investigated. A comprehensive review on power quality and dynamic response issues caused by large-scale wind power integration is presented. Moreover, the evolving grid code requirements for grid-connected WPPs in most leading countries including Denmark, U.K., Australia, Germany, and the USA are analyzed and compared. Furthermore, the improvement approaches proposed in the literature are investigated and classified on different basis and their pros and cons are discussed. A brief discussion on the solutions and future directions is presented. Finally, some conclusive considerations about the overall study are provided.