机器学习驱动的高能分子QSPR模型:安全性和高能特性预测综述

IF 5.5 Q1 ENGINEERING, CHEMICAL
Mingchi Gao , Tengxin Huang , Mingtian Li , Yingjun Zhang , Liangliang Wang , Junjie Ding
{"title":"机器学习驱动的高能分子QSPR模型:安全性和高能特性预测综述","authors":"Mingchi Gao ,&nbsp;Tengxin Huang ,&nbsp;Mingtian Li ,&nbsp;Yingjun Zhang ,&nbsp;Liangliang Wang ,&nbsp;Junjie Ding","doi":"10.1016/j.ceja.2025.100804","DOIUrl":null,"url":null,"abstract":"<div><div>The performance prediction and rational design of energetic molecules (EMs) remain central challenges in their development. Traditional experimental methods are constrained by prohibitively high costs and inherent safety risks, highlighting the urgent requirement for efficient computational alternatives. The quantitative structure-property relationship (QSPR) framework allows quantitative mapping between the molecular structures and macroscopic properties of EMs. When integrated with machine learning (ML), a methodology uniquely suited for deciphering complex structure-property correlations, the resulting combination facilitates the accurate prediction of EMs behavior. This review critically evaluates ML-driven QSPR models for predicting energetic properties (e.g., enthalpy of formation, sublimation enthalpy, density, and detonation velocity) and safety characteristics (e.g., impact sensitivity and thermal stability) of EMs. The key technical aspects are systematically analyzed, including molecular descriptor optimization, ML algorithm selection, and model validation strategies. Persistent challenges, such as data scarcity and model generalizability, are thoroughly discussed. Finally, future directions are outlined for the development of high-precision QSPR models through a synergistic data algorithm-application paradigm, emphasizing multi-objective optimization and interpretable ML frameworks.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"23 ","pages":"Article 100804"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-learning-driven QSPR models for energetic molecules: A review on safety and energetic properties prediction\",\"authors\":\"Mingchi Gao ,&nbsp;Tengxin Huang ,&nbsp;Mingtian Li ,&nbsp;Yingjun Zhang ,&nbsp;Liangliang Wang ,&nbsp;Junjie Ding\",\"doi\":\"10.1016/j.ceja.2025.100804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance prediction and rational design of energetic molecules (EMs) remain central challenges in their development. Traditional experimental methods are constrained by prohibitively high costs and inherent safety risks, highlighting the urgent requirement for efficient computational alternatives. The quantitative structure-property relationship (QSPR) framework allows quantitative mapping between the molecular structures and macroscopic properties of EMs. When integrated with machine learning (ML), a methodology uniquely suited for deciphering complex structure-property correlations, the resulting combination facilitates the accurate prediction of EMs behavior. This review critically evaluates ML-driven QSPR models for predicting energetic properties (e.g., enthalpy of formation, sublimation enthalpy, density, and detonation velocity) and safety characteristics (e.g., impact sensitivity and thermal stability) of EMs. The key technical aspects are systematically analyzed, including molecular descriptor optimization, ML algorithm selection, and model validation strategies. Persistent challenges, such as data scarcity and model generalizability, are thoroughly discussed. Finally, future directions are outlined for the development of high-precision QSPR models through a synergistic data algorithm-application paradigm, emphasizing multi-objective optimization and interpretable ML frameworks.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"23 \",\"pages\":\"Article 100804\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821125001012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125001012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

高能分子的性能预测和合理设计是其发展的核心挑战。传统的实验方法受到过高的成本和固有的安全风险的限制,迫切需要高效的计算替代方案。定量结构-性质关系(QSPR)框架允许在分子结构和宏观性质之间进行定量映射。当与机器学习(ML)(一种特别适合破译复杂结构-属性相关性的方法)相结合时,所得到的组合有助于准确预测EMs的行为。这篇综述批判性地评估了ml驱动的QSPR模型,用于预测EMs的能量特性(例如,形成焓、升华焓、密度和爆速)和安全特性(例如,冲击敏感性和热稳定性)。系统分析了分子描述符优化、机器学习算法选择和模型验证策略等关键技术问题。深入讨论了数据稀缺性和模型可泛化性等持续存在的挑战。最后,概述了通过协同数据算法-应用范式开发高精度QSPR模型的未来方向,强调多目标优化和可解释的ML框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine-learning-driven QSPR models for energetic molecules: A review on safety and energetic properties prediction

Machine-learning-driven QSPR models for energetic molecules: A review on safety and energetic properties prediction
The performance prediction and rational design of energetic molecules (EMs) remain central challenges in their development. Traditional experimental methods are constrained by prohibitively high costs and inherent safety risks, highlighting the urgent requirement for efficient computational alternatives. The quantitative structure-property relationship (QSPR) framework allows quantitative mapping between the molecular structures and macroscopic properties of EMs. When integrated with machine learning (ML), a methodology uniquely suited for deciphering complex structure-property correlations, the resulting combination facilitates the accurate prediction of EMs behavior. This review critically evaluates ML-driven QSPR models for predicting energetic properties (e.g., enthalpy of formation, sublimation enthalpy, density, and detonation velocity) and safety characteristics (e.g., impact sensitivity and thermal stability) of EMs. The key technical aspects are systematically analyzed, including molecular descriptor optimization, ML algorithm selection, and model validation strategies. Persistent challenges, such as data scarcity and model generalizability, are thoroughly discussed. Finally, future directions are outlined for the development of high-precision QSPR models through a synergistic data algorithm-application paradigm, emphasizing multi-objective optimization and interpretable ML frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信