Marcelo S. Guimaraes , Itzhak Roditi , Silvio P. Sorella , Arthur F. Vieira
{"title":"量子场论中Araki-Uhlmann相对熵的数值分析","authors":"Marcelo S. Guimaraes , Itzhak Roditi , Silvio P. Sorella , Arthur F. Vieira","doi":"10.1016/j.nuclphysb.2025.117011","DOIUrl":null,"url":null,"abstract":"<div><div>We numerically investigate the Araki-Uhlmann relative entropy in Quantum Field Theory, focusing on a free massive scalar field in <span><math><mn>1</mn><mo>+</mo><mn>1</mn></math></span>-dimensional Minkowski spacetime. Using Tomita-Takesaki modular theory, we analyze the relative entropy between a coherent state and the vacuum state, with several types of test functions localized in the right Rindler wedge. Our results confirm that relative entropy decreases with increasing mass and grows with the size of the spacetime region, aligning with theoretical expectations.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 117011"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical analysis of Araki-Uhlmann relative entropy in Quantum Field Theory\",\"authors\":\"Marcelo S. Guimaraes , Itzhak Roditi , Silvio P. Sorella , Arthur F. Vieira\",\"doi\":\"10.1016/j.nuclphysb.2025.117011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We numerically investigate the Araki-Uhlmann relative entropy in Quantum Field Theory, focusing on a free massive scalar field in <span><math><mn>1</mn><mo>+</mo><mn>1</mn></math></span>-dimensional Minkowski spacetime. Using Tomita-Takesaki modular theory, we analyze the relative entropy between a coherent state and the vacuum state, with several types of test functions localized in the right Rindler wedge. Our results confirm that relative entropy decreases with increasing mass and grows with the size of the spacetime region, aligning with theoretical expectations.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1018 \",\"pages\":\"Article 117011\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325002202\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325002202","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
A numerical analysis of Araki-Uhlmann relative entropy in Quantum Field Theory
We numerically investigate the Araki-Uhlmann relative entropy in Quantum Field Theory, focusing on a free massive scalar field in -dimensional Minkowski spacetime. Using Tomita-Takesaki modular theory, we analyze the relative entropy between a coherent state and the vacuum state, with several types of test functions localized in the right Rindler wedge. Our results confirm that relative entropy decreases with increasing mass and grows with the size of the spacetime region, aligning with theoretical expectations.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.