Paula R Soares Procópio , Rafael Zambelli Pinto , Bárbara A Junqueira Murta , Paola Figueiredo Caldeira , Priscila Albuquerque Araújo , Robert Schleip , Sérgio Teixeira Fonseca , Renan Alves Resende , Juliana Melo Ocarino
{"title":"慢性腰痛患者背阔肌和对侧臀大肌之间的肌筋膜力传递减少","authors":"Paula R Soares Procópio , Rafael Zambelli Pinto , Bárbara A Junqueira Murta , Paola Figueiredo Caldeira , Priscila Albuquerque Araújo , Robert Schleip , Sérgio Teixeira Fonseca , Renan Alves Resende , Juliana Melo Ocarino","doi":"10.1016/j.jbiomech.2025.112850","DOIUrl":null,"url":null,"abstract":"<div><div>The thoracolumbar fascia is essential in lumbar stabilization and is considered a path of transmitting myofascial force. This study investigates whether there is a difference in the myofascial force transmission between latissimus dorsi and contralateral gluteus maximus in individuals with and without chronic low back pain (CLBP). Forty-eight individuals were divided into CLBP and control groups. Outcome variables were evaluated in two experimental conditions: relaxed and contracted latissimus dorsi. Lumbar stiffness was assessed using a non-invasive digital indentometer, and passive properties of the contralateral hip (resting position, torque and stiffness) were evaluated using an isokinetic dynamometer. Trunk and hip muscle activation was monitored with electromyography. Data were analyzed using two-way ANOVA. Latissimus dorsi contraction increased lumbar stiffness in both groups (p < 0.001) compared to the relaxed condition. However, only the control group showed a change in the hip resting position toward greater lateral rotation and an increase in passive hip torque with latissimus dorsi contraction compared to the relaxed condition (p < 0.001). Additionally, latissimus dorsi contraction led to a small and clinically non-relevant increase in passive hip stiffness (below the standard error of measurement) in both groups when compared to the relaxed condition. The results demonstrated that the myofascial force transmission between latissimus dorsi and contralateral gluteus maximus is reduced in individuals with CLBP, since the latissimus dorsi contraction changed the passive properties only in the adjacent tissues (lumbar region) but not in tissues more distant from the origin of the traction.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"190 ","pages":"Article 112850"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individuals with chronic low back pain have reduced myofascial force transmission between latissimus dorsi and contralateral gluteus maximus muscles\",\"authors\":\"Paula R Soares Procópio , Rafael Zambelli Pinto , Bárbara A Junqueira Murta , Paola Figueiredo Caldeira , Priscila Albuquerque Araújo , Robert Schleip , Sérgio Teixeira Fonseca , Renan Alves Resende , Juliana Melo Ocarino\",\"doi\":\"10.1016/j.jbiomech.2025.112850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The thoracolumbar fascia is essential in lumbar stabilization and is considered a path of transmitting myofascial force. This study investigates whether there is a difference in the myofascial force transmission between latissimus dorsi and contralateral gluteus maximus in individuals with and without chronic low back pain (CLBP). Forty-eight individuals were divided into CLBP and control groups. Outcome variables were evaluated in two experimental conditions: relaxed and contracted latissimus dorsi. Lumbar stiffness was assessed using a non-invasive digital indentometer, and passive properties of the contralateral hip (resting position, torque and stiffness) were evaluated using an isokinetic dynamometer. Trunk and hip muscle activation was monitored with electromyography. Data were analyzed using two-way ANOVA. Latissimus dorsi contraction increased lumbar stiffness in both groups (p < 0.001) compared to the relaxed condition. However, only the control group showed a change in the hip resting position toward greater lateral rotation and an increase in passive hip torque with latissimus dorsi contraction compared to the relaxed condition (p < 0.001). Additionally, latissimus dorsi contraction led to a small and clinically non-relevant increase in passive hip stiffness (below the standard error of measurement) in both groups when compared to the relaxed condition. The results demonstrated that the myofascial force transmission between latissimus dorsi and contralateral gluteus maximus is reduced in individuals with CLBP, since the latissimus dorsi contraction changed the passive properties only in the adjacent tissues (lumbar region) but not in tissues more distant from the origin of the traction.</div></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"190 \",\"pages\":\"Article 112850\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929025003628\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025003628","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Individuals with chronic low back pain have reduced myofascial force transmission between latissimus dorsi and contralateral gluteus maximus muscles
The thoracolumbar fascia is essential in lumbar stabilization and is considered a path of transmitting myofascial force. This study investigates whether there is a difference in the myofascial force transmission between latissimus dorsi and contralateral gluteus maximus in individuals with and without chronic low back pain (CLBP). Forty-eight individuals were divided into CLBP and control groups. Outcome variables were evaluated in two experimental conditions: relaxed and contracted latissimus dorsi. Lumbar stiffness was assessed using a non-invasive digital indentometer, and passive properties of the contralateral hip (resting position, torque and stiffness) were evaluated using an isokinetic dynamometer. Trunk and hip muscle activation was monitored with electromyography. Data were analyzed using two-way ANOVA. Latissimus dorsi contraction increased lumbar stiffness in both groups (p < 0.001) compared to the relaxed condition. However, only the control group showed a change in the hip resting position toward greater lateral rotation and an increase in passive hip torque with latissimus dorsi contraction compared to the relaxed condition (p < 0.001). Additionally, latissimus dorsi contraction led to a small and clinically non-relevant increase in passive hip stiffness (below the standard error of measurement) in both groups when compared to the relaxed condition. The results demonstrated that the myofascial force transmission between latissimus dorsi and contralateral gluteus maximus is reduced in individuals with CLBP, since the latissimus dorsi contraction changed the passive properties only in the adjacent tissues (lumbar region) but not in tissues more distant from the origin of the traction.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.