Min Deng , Siwei Ai , Ying Liu , Hailin Zhang , Zibo Zhai , Dan Cheng , Longwei He , Songjiao Li
{"title":"双锁定中性粒细胞弹性蛋白酶/次氯酸盐激活探针用于骨关节炎的精确生物成像","authors":"Min Deng , Siwei Ai , Ying Liu , Hailin Zhang , Zibo Zhai , Dan Cheng , Longwei He , Songjiao Li","doi":"10.1016/j.saa.2025.126623","DOIUrl":null,"url":null,"abstract":"<div><div>In osteoarthritis, hypochlorous acid (HClO)—a critical biomarker of inflammation—and neutrophil elastase (NE)—a key mediator of inflammatory responses—undergo significant changes. Fluorescent probes, which offer high sensitivity and real-time visualization, have been widely employed for osteoarthritis imaging. However, most existing probes are designed to detect only a single biomarker, which can lead to false-positive signals in complex biological environments. In contrast, dual-locked fluorescent probes, which require activation by two distinct biomarkers, offer improved specificity and reliability. These probes are particularly advantageous for multiplexed detection in arthritis-related imaging. To date, no dual-responsive fluorescent probe targeting both HClO and NE has been reported. In this study, we introduce Cou-HN, a dual-locked fluorescent probe that exhibits a significant fluorescence enhancement at 470 nm only when both HClO and NE are present simultaneously. Neither HClO nor NE alone is sufficient to trigger a notable fluorescence response. This dual-activation strategy provides Cou-HN with superior imaging accuracy compared to single-locked probes. Both in vitro and in vivo experiments confirm its excellent performance, highlighting its promise for more precise diagnosis and monitoring of osteoarthritis.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"344 ","pages":"Article 126623"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A double-locked and neutrophil elastase/hypochlorite activated probe for accurate bioimaging of osteoarthritis\",\"authors\":\"Min Deng , Siwei Ai , Ying Liu , Hailin Zhang , Zibo Zhai , Dan Cheng , Longwei He , Songjiao Li\",\"doi\":\"10.1016/j.saa.2025.126623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In osteoarthritis, hypochlorous acid (HClO)—a critical biomarker of inflammation—and neutrophil elastase (NE)—a key mediator of inflammatory responses—undergo significant changes. Fluorescent probes, which offer high sensitivity and real-time visualization, have been widely employed for osteoarthritis imaging. However, most existing probes are designed to detect only a single biomarker, which can lead to false-positive signals in complex biological environments. In contrast, dual-locked fluorescent probes, which require activation by two distinct biomarkers, offer improved specificity and reliability. These probes are particularly advantageous for multiplexed detection in arthritis-related imaging. To date, no dual-responsive fluorescent probe targeting both HClO and NE has been reported. In this study, we introduce Cou-HN, a dual-locked fluorescent probe that exhibits a significant fluorescence enhancement at 470 nm only when both HClO and NE are present simultaneously. Neither HClO nor NE alone is sufficient to trigger a notable fluorescence response. This dual-activation strategy provides Cou-HN with superior imaging accuracy compared to single-locked probes. Both in vitro and in vivo experiments confirm its excellent performance, highlighting its promise for more precise diagnosis and monitoring of osteoarthritis.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"344 \",\"pages\":\"Article 126623\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142525009308\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525009308","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
A double-locked and neutrophil elastase/hypochlorite activated probe for accurate bioimaging of osteoarthritis
In osteoarthritis, hypochlorous acid (HClO)—a critical biomarker of inflammation—and neutrophil elastase (NE)—a key mediator of inflammatory responses—undergo significant changes. Fluorescent probes, which offer high sensitivity and real-time visualization, have been widely employed for osteoarthritis imaging. However, most existing probes are designed to detect only a single biomarker, which can lead to false-positive signals in complex biological environments. In contrast, dual-locked fluorescent probes, which require activation by two distinct biomarkers, offer improved specificity and reliability. These probes are particularly advantageous for multiplexed detection in arthritis-related imaging. To date, no dual-responsive fluorescent probe targeting both HClO and NE has been reported. In this study, we introduce Cou-HN, a dual-locked fluorescent probe that exhibits a significant fluorescence enhancement at 470 nm only when both HClO and NE are present simultaneously. Neither HClO nor NE alone is sufficient to trigger a notable fluorescence response. This dual-activation strategy provides Cou-HN with superior imaging accuracy compared to single-locked probes. Both in vitro and in vivo experiments confirm its excellent performance, highlighting its promise for more precise diagnosis and monitoring of osteoarthritis.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.