图的一点电晕偏心矩阵的谱分析

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Smrati Pandey, Lavanya Selvaganesh
{"title":"图的一点电晕偏心矩阵的谱分析","authors":"Smrati Pandey,&nbsp;Lavanya Selvaganesh","doi":"10.1016/j.dam.2025.06.042","DOIUrl":null,"url":null,"abstract":"<div><div>Among various graph operations, the corona product stands out as one of the well-known and extensively analyzed due to its elegant structural properties. Over the time, numerous variants of the corona operation have been introduced and are widely studied. In this paper, we investigate the spectral properties of the eccentricity matrix for one such variant. Let <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span> be two connected graphs on <span><math><mi>m</mi></math></span> and <span><math><mi>n</mi></math></span> vertices, respectively. Let <span><math><mi>H</mi></math></span> be rooted at a designated vertex <span><math><mi>z</mi></math></span>. One-point-corona, <span><math><mrow><mi>G</mi><msub><mrow><mo>∘</mo></mrow><mrow><mi>z</mi></mrow></msub><mi>H</mi></mrow></math></span> is obtained by taking one copy of <span><math><mi>H</mi></math></span> for each vertex of <span><math><mi>G</mi></math></span> and joining the root vertex <span><math><mi>z</mi></math></span> in each copy of <span><math><mi>H</mi></math></span> to the corresponding vertex in <span><math><mi>G</mi></math></span> by an edge. In this article, we study the eccentricity matrix, <span><math><mi>ɛ</mi></math></span>, of one-point-corona of two graphs. First, we characterize the irreducibility of <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><msub><mrow><mo>∘</mo></mrow><mrow><mi>z</mi></mrow></msub><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. We prove this result by demonstrating the connectedness of the direct product of two graphs when one of them has a self-loop. Under the assumption that <span><math><mi>G</mi></math></span> is self-centered, we investigate the <span><math><mi>ɛ</mi></math></span>-spectrum for <span><math><mrow><mi>G</mi><msub><mrow><mo>∘</mo></mrow><mrow><mi>z</mi></mrow></msub><mi>H</mi></mrow></math></span> and identify the collection of <span><math><mi>ɛ</mi></math></span>-cospectral graphs and extremal graphs. In this process of finding the extremal graphs in terms of their <span><math><mi>ɛ</mi></math></span>-spectral radius, we establish a stronger result of organizing the graphs, <span><math><mrow><mi>G</mi><msub><mrow><mo>∘</mo></mrow><mrow><mi>z</mi></mrow></msub><mi>H</mi></mrow></math></span>, in a linear ordering of their spectral radius when <span><math><mi>G</mi></math></span> is self-centered and <span><math><mi>H</mi></math></span> is any rooted graph whose root vertex has a fixed eccentricity.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 348-358"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral analysis of eccentricity matrix for one-point-corona of graphs\",\"authors\":\"Smrati Pandey,&nbsp;Lavanya Selvaganesh\",\"doi\":\"10.1016/j.dam.2025.06.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Among various graph operations, the corona product stands out as one of the well-known and extensively analyzed due to its elegant structural properties. Over the time, numerous variants of the corona operation have been introduced and are widely studied. In this paper, we investigate the spectral properties of the eccentricity matrix for one such variant. Let <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span> be two connected graphs on <span><math><mi>m</mi></math></span> and <span><math><mi>n</mi></math></span> vertices, respectively. Let <span><math><mi>H</mi></math></span> be rooted at a designated vertex <span><math><mi>z</mi></math></span>. One-point-corona, <span><math><mrow><mi>G</mi><msub><mrow><mo>∘</mo></mrow><mrow><mi>z</mi></mrow></msub><mi>H</mi></mrow></math></span> is obtained by taking one copy of <span><math><mi>H</mi></math></span> for each vertex of <span><math><mi>G</mi></math></span> and joining the root vertex <span><math><mi>z</mi></math></span> in each copy of <span><math><mi>H</mi></math></span> to the corresponding vertex in <span><math><mi>G</mi></math></span> by an edge. In this article, we study the eccentricity matrix, <span><math><mi>ɛ</mi></math></span>, of one-point-corona of two graphs. First, we characterize the irreducibility of <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><msub><mrow><mo>∘</mo></mrow><mrow><mi>z</mi></mrow></msub><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. We prove this result by demonstrating the connectedness of the direct product of two graphs when one of them has a self-loop. Under the assumption that <span><math><mi>G</mi></math></span> is self-centered, we investigate the <span><math><mi>ɛ</mi></math></span>-spectrum for <span><math><mrow><mi>G</mi><msub><mrow><mo>∘</mo></mrow><mrow><mi>z</mi></mrow></msub><mi>H</mi></mrow></math></span> and identify the collection of <span><math><mi>ɛ</mi></math></span>-cospectral graphs and extremal graphs. In this process of finding the extremal graphs in terms of their <span><math><mi>ɛ</mi></math></span>-spectral radius, we establish a stronger result of organizing the graphs, <span><math><mrow><mi>G</mi><msub><mrow><mo>∘</mo></mrow><mrow><mi>z</mi></mrow></msub><mi>H</mi></mrow></math></span>, in a linear ordering of their spectral radius when <span><math><mi>G</mi></math></span> is self-centered and <span><math><mi>H</mi></math></span> is any rooted graph whose root vertex has a fixed eccentricity.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"376 \",\"pages\":\"Pages 348-358\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25003592\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003592","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在各种图形运算中,电晕产品因其优雅的结构特性而成为人们熟知和广泛分析的图形运算之一。随着时间的推移,电晕操作的许多变体已经被引入并被广泛研究。在本文中,我们研究了偏心矩阵的谱性质。设G和H分别是m和n个顶点上的两个连通图。设H的根在指定的顶点z上。单点冕,G°zH是通过对G的每个顶点取一个H的副本,并将H的每个副本中的根顶点z与G中相应的顶点通过一条边连接得到的。本文研究了两个图的一点电晕的偏心矩阵。首先,我们描述了i (G°zH)的不可约性。我们通过证明其中一个图有自环时两个图的直积的连通性来证明这一结果。在假设G是自中心的情况下,我们研究了G°zH的宿谱,并确定了宿谱图和极值图的集合。在这个用谱半径来寻找极值图的过程中,我们建立了一个更强的结果G°zH,当G是自中心的,H是根顶点有固定偏心的任意根图时,用谱半径的线性顺序来组织这些图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral analysis of eccentricity matrix for one-point-corona of graphs
Among various graph operations, the corona product stands out as one of the well-known and extensively analyzed due to its elegant structural properties. Over the time, numerous variants of the corona operation have been introduced and are widely studied. In this paper, we investigate the spectral properties of the eccentricity matrix for one such variant. Let G and H be two connected graphs on m and n vertices, respectively. Let H be rooted at a designated vertex z. One-point-corona, GzH is obtained by taking one copy of H for each vertex of G and joining the root vertex z in each copy of H to the corresponding vertex in G by an edge. In this article, we study the eccentricity matrix, ɛ, of one-point-corona of two graphs. First, we characterize the irreducibility of ɛ(GzH). We prove this result by demonstrating the connectedness of the direct product of two graphs when one of them has a self-loop. Under the assumption that G is self-centered, we investigate the ɛ-spectrum for GzH and identify the collection of ɛ-cospectral graphs and extremal graphs. In this process of finding the extremal graphs in terms of their ɛ-spectral radius, we establish a stronger result of organizing the graphs, GzH, in a linear ordering of their spectral radius when G is self-centered and H is any rooted graph whose root vertex has a fixed eccentricity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信