Z-scheme WSTe/MoSSe范德华异质结作为析氢光催化剂:第一性原理预测

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Lei Tian , Jiahuan Hu , Zhenyi Jiang , Xuanhong Wang
{"title":"Z-scheme WSTe/MoSSe范德华异质结作为析氢光催化剂:第一性原理预测","authors":"Lei Tian ,&nbsp;Jiahuan Hu ,&nbsp;Zhenyi Jiang ,&nbsp;Xuanhong Wang","doi":"10.1016/j.chemphys.2025.112842","DOIUrl":null,"url":null,"abstract":"<div><div>WSTe/MoSSe heterojunction is constructed, covering four contact modes. The calculated built-in electric field (E<sub>IF</sub>) and interlayer spacing (h) validate the van der Waals (vdWs) heterojunction formation. In the analysis of interfacial charge behavior, the electrostatic interaction of Janus material heterojunction significantly affects charge transfer. Systematic analysis of density of states (DOS) and band structure reveals that all four contact configurations form type-II heterojunctions. By calculating conduction band offset (CBO) and valence band offset (VBO), it is found that the heterostructure in S<img>se contact mode is more favorable to hydrogen evolution, the analysis of differential charge density and band alignment further confirms the <em>Z</em>-scheme charge transfer mechanism in the heterojunction material system. Further investigations reveal 0.5 eV and 1.0 eV overpotentials for reduction and oxidation processes, respectively. The introduction of U<sub>e</sub> (0.5 V) lowers the Gibbs free energy in the WSTe/MoSSe heterojunction system, demonstrating its spontaneous water-splitting capability under light exposure. Thermodynamic driving force enables autonomous photocatalysis, enhancing hydrogen production efficiency and positioning the material for solar energy conversion</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"598 ","pages":"Article 112842"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Z-scheme WSTe/MoSSe van der Waals heterojunction as a hydrogen evolution photocatalyst: First-principles predictions\",\"authors\":\"Lei Tian ,&nbsp;Jiahuan Hu ,&nbsp;Zhenyi Jiang ,&nbsp;Xuanhong Wang\",\"doi\":\"10.1016/j.chemphys.2025.112842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>WSTe/MoSSe heterojunction is constructed, covering four contact modes. The calculated built-in electric field (E<sub>IF</sub>) and interlayer spacing (h) validate the van der Waals (vdWs) heterojunction formation. In the analysis of interfacial charge behavior, the electrostatic interaction of Janus material heterojunction significantly affects charge transfer. Systematic analysis of density of states (DOS) and band structure reveals that all four contact configurations form type-II heterojunctions. By calculating conduction band offset (CBO) and valence band offset (VBO), it is found that the heterostructure in S<img>se contact mode is more favorable to hydrogen evolution, the analysis of differential charge density and band alignment further confirms the <em>Z</em>-scheme charge transfer mechanism in the heterojunction material system. Further investigations reveal 0.5 eV and 1.0 eV overpotentials for reduction and oxidation processes, respectively. The introduction of U<sub>e</sub> (0.5 V) lowers the Gibbs free energy in the WSTe/MoSSe heterojunction system, demonstrating its spontaneous water-splitting capability under light exposure. Thermodynamic driving force enables autonomous photocatalysis, enhancing hydrogen production efficiency and positioning the material for solar energy conversion</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"598 \",\"pages\":\"Article 112842\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425002435\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425002435","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

构建了WSTe/MoSSe异质结,覆盖了四种接触模式。计算得到的内置电场(EIF)和层间间距(h)验证了范德华异质结的形成。在界面电荷行为分析中,Janus材料异质结的静电相互作用对电荷转移有显著影响。系统的态密度(DOS)和能带结构分析表明,四种接触构型均形成ii型异质结。通过计算导带偏移量(CBO)和价带偏移量(VBO),发现Sse接触模式下的异质结构更有利于析氢,电荷密度差和能带对准分析进一步证实了异质结材料体系中Z-scheme电荷转移机制。进一步研究发现还原和氧化过程的过电位分别为0.5 eV和1.0 eV。引入Ue (0.5 V)降低了WSTe/MoSSe异质结体系的吉布斯自由能,证明了其在光照射下的自发水分解能力。热力学驱动力实现自主光催化,提高制氢效率,定位太阳能转换材料
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Z-scheme WSTe/MoSSe van der Waals heterojunction as a hydrogen evolution photocatalyst: First-principles predictions
WSTe/MoSSe heterojunction is constructed, covering four contact modes. The calculated built-in electric field (EIF) and interlayer spacing (h) validate the van der Waals (vdWs) heterojunction formation. In the analysis of interfacial charge behavior, the electrostatic interaction of Janus material heterojunction significantly affects charge transfer. Systematic analysis of density of states (DOS) and band structure reveals that all four contact configurations form type-II heterojunctions. By calculating conduction band offset (CBO) and valence band offset (VBO), it is found that the heterostructure in Sse contact mode is more favorable to hydrogen evolution, the analysis of differential charge density and band alignment further confirms the Z-scheme charge transfer mechanism in the heterojunction material system. Further investigations reveal 0.5 eV and 1.0 eV overpotentials for reduction and oxidation processes, respectively. The introduction of Ue (0.5 V) lowers the Gibbs free energy in the WSTe/MoSSe heterojunction system, demonstrating its spontaneous water-splitting capability under light exposure. Thermodynamic driving force enables autonomous photocatalysis, enhancing hydrogen production efficiency and positioning the material for solar energy conversion
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信