耶鲁脑图谱交互式探索多模态结构和功能神经成像数据。

IF 3
Frontiers in network physiology Pub Date : 2025-06-18 eCollection Date: 2025-01-01 DOI:10.3389/fnetp.2025.1585019
Evan Collins, Omar Chishti, Hari McGrath, Sami Obaid, Alex King, Edwin Qiu, Ellie Gabriel, Xilin Shen, Jagriti Arora, Xenophon Papademetris, R Todd Constable, Dennis D Spencer, Hitten P Zaveri
{"title":"耶鲁脑图谱交互式探索多模态结构和功能神经成像数据。","authors":"Evan Collins, Omar Chishti, Hari McGrath, Sami Obaid, Alex King, Edwin Qiu, Ellie Gabriel, Xilin Shen, Jagriti Arora, Xenophon Papademetris, R Todd Constable, Dennis D Spencer, Hitten P Zaveri","doi":"10.3389/fnetp.2025.1585019","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the relationship between structure and function in the human brain is essential for revealing how brain organization influences cognition, perception, emotion, and behavior. To this end, we introduce an interactive web tool and underlying database for Yale Brain Atlas, a high-resolution anatomical parcellation designed to facilitate precise localization and generalizable analyses of multimodal neuroimaging data. The tool supports parcel-level exploration of structural and functional data through dedicated interactive pages for each modality. For structural data, it incorporates white matter connectomes of 1,065 subjects and cortical thickness profiles of 200 subjects both from the Human Connectome Project. For functional data, it includes resting-state fMRI connectivity matrices for 34 healthy subjects and task-specific fMRI activation data acquired from two meta-analytic resources-Neurosynth and NeuroQuery-which, once translated into Yale Brain Atlas space and modified to include 334 function-specific terms, form Parcelsynth and ParcelQuery, respectively. Altogether, to support investigation of brain structure-function relationships, this study presents a web tool and database for the Yale Brain Atlas that enable scalable, interactive exploration of multimodal neuroimaging data.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"5 ","pages":"1585019"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Yale Brain Atlas to interactively explore multimodal structural and functional neuroimaging data.\",\"authors\":\"Evan Collins, Omar Chishti, Hari McGrath, Sami Obaid, Alex King, Edwin Qiu, Ellie Gabriel, Xilin Shen, Jagriti Arora, Xenophon Papademetris, R Todd Constable, Dennis D Spencer, Hitten P Zaveri\",\"doi\":\"10.3389/fnetp.2025.1585019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the relationship between structure and function in the human brain is essential for revealing how brain organization influences cognition, perception, emotion, and behavior. To this end, we introduce an interactive web tool and underlying database for Yale Brain Atlas, a high-resolution anatomical parcellation designed to facilitate precise localization and generalizable analyses of multimodal neuroimaging data. The tool supports parcel-level exploration of structural and functional data through dedicated interactive pages for each modality. For structural data, it incorporates white matter connectomes of 1,065 subjects and cortical thickness profiles of 200 subjects both from the Human Connectome Project. For functional data, it includes resting-state fMRI connectivity matrices for 34 healthy subjects and task-specific fMRI activation data acquired from two meta-analytic resources-Neurosynth and NeuroQuery-which, once translated into Yale Brain Atlas space and modified to include 334 function-specific terms, form Parcelsynth and ParcelQuery, respectively. Altogether, to support investigation of brain structure-function relationships, this study presents a web tool and database for the Yale Brain Atlas that enable scalable, interactive exploration of multimodal neuroimaging data.</p>\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":\"5 \",\"pages\":\"1585019\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2025.1585019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2025.1585019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

理解人类大脑结构和功能之间的关系对于揭示大脑组织如何影响认知、感知、情感和行为至关重要。为此,我们为耶鲁脑图谱引入了一个交互式网络工具和底层数据库,这是一个高分辨率的解剖分割,旨在促进多模态神经成像数据的精确定位和推广分析。该工具支持通过针对每种模式的专用交互页面对结构和功能数据进行包级探索。对于结构数据,它结合了1,065名受试者的白质连接体和200名受试者的皮质厚度剖面,两者都来自人类连接体计划。对于功能数据,它包括34名健康受试者的静息状态fMRI连接矩阵和从两个元分析资源(neurosynth和neuroquery)获得的任务特异性fMRI激活数据,这些数据曾被翻译成耶鲁脑图谱空间,并被修改为包括334个功能特异性术语,分别来自Parcelsynth和ParcelQuery。总之,为了支持对大脑结构-功能关系的研究,本研究为耶鲁大脑图谱提供了一个网络工具和数据库,使多模态神经成像数据的可扩展、交互式探索成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yale Brain Atlas to interactively explore multimodal structural and functional neuroimaging data.

Understanding the relationship between structure and function in the human brain is essential for revealing how brain organization influences cognition, perception, emotion, and behavior. To this end, we introduce an interactive web tool and underlying database for Yale Brain Atlas, a high-resolution anatomical parcellation designed to facilitate precise localization and generalizable analyses of multimodal neuroimaging data. The tool supports parcel-level exploration of structural and functional data through dedicated interactive pages for each modality. For structural data, it incorporates white matter connectomes of 1,065 subjects and cortical thickness profiles of 200 subjects both from the Human Connectome Project. For functional data, it includes resting-state fMRI connectivity matrices for 34 healthy subjects and task-specific fMRI activation data acquired from two meta-analytic resources-Neurosynth and NeuroQuery-which, once translated into Yale Brain Atlas space and modified to include 334 function-specific terms, form Parcelsynth and ParcelQuery, respectively. Altogether, to support investigation of brain structure-function relationships, this study presents a web tool and database for the Yale Brain Atlas that enable scalable, interactive exploration of multimodal neuroimaging data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信