Changxin Lai, Minglang Yin, Eugene G Kholmovski, Dan M Popescu, Dai-Yin Lu, Erica Scherer, Edem Binka, Stefan L Zimmerman, Jonathan Chrispin, Allison G Hays, Dermot M Phelan, M Roselle Abraham, Natalia A Trayanova
{"title":"多模式人工智能预测肥厚性心肌病患者心律失常死亡。","authors":"Changxin Lai, Minglang Yin, Eugene G Kholmovski, Dan M Popescu, Dai-Yin Lu, Erica Scherer, Edem Binka, Stefan L Zimmerman, Jonathan Chrispin, Allison G Hays, Dermot M Phelan, M Roselle Abraham, Natalia A Trayanova","doi":"10.1038/s44161-025-00679-1","DOIUrl":null,"url":null,"abstract":"<p><p>Sudden cardiac death from ventricular arrhythmias is a leading cause of mortality worldwide. Arrhythmic death prognostication is challenging in patients with hypertrophic cardiomyopathy (HCM), a setting where current clinical guidelines show low performance and inconsistent accuracy. Here, we present a deep learning approach, MAARS (Multimodal Artificial intelligence for ventricular Arrhythmia Risk Stratification), to forecast lethal arrhythmia events in patients with HCM by analyzing multimodal medical data. MAARS' transformer-based neural networks learn from electronic health records, echocardiogram and radiology reports, and contrast-enhanced cardiac magnetic resonance images, the latter being a unique feature of this model. MAARS achieves an area under the curve of 0.89 (95% confidence interval (CI) 0.79-0.94) and 0.81 (95% CI 0.69-0.93) in internal and external cohorts and outperforms current clinical guidelines by 0.27-0.35 (internal) and 0.22-0.30 (external). In contrast to clinical guidelines, it demonstrates fairness across demographic subgroups. We interpret MAARS' predictions on multiple levels to promote artificial intelligence transparency and derive risk factors warranting further investigation.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":"891-903"},"PeriodicalIF":10.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259465/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal AI to forecast arrhythmic death in hypertrophic cardiomyopathy.\",\"authors\":\"Changxin Lai, Minglang Yin, Eugene G Kholmovski, Dan M Popescu, Dai-Yin Lu, Erica Scherer, Edem Binka, Stefan L Zimmerman, Jonathan Chrispin, Allison G Hays, Dermot M Phelan, M Roselle Abraham, Natalia A Trayanova\",\"doi\":\"10.1038/s44161-025-00679-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sudden cardiac death from ventricular arrhythmias is a leading cause of mortality worldwide. Arrhythmic death prognostication is challenging in patients with hypertrophic cardiomyopathy (HCM), a setting where current clinical guidelines show low performance and inconsistent accuracy. Here, we present a deep learning approach, MAARS (Multimodal Artificial intelligence for ventricular Arrhythmia Risk Stratification), to forecast lethal arrhythmia events in patients with HCM by analyzing multimodal medical data. MAARS' transformer-based neural networks learn from electronic health records, echocardiogram and radiology reports, and contrast-enhanced cardiac magnetic resonance images, the latter being a unique feature of this model. MAARS achieves an area under the curve of 0.89 (95% confidence interval (CI) 0.79-0.94) and 0.81 (95% CI 0.69-0.93) in internal and external cohorts and outperforms current clinical guidelines by 0.27-0.35 (internal) and 0.22-0.30 (external). In contrast to clinical guidelines, it demonstrates fairness across demographic subgroups. We interpret MAARS' predictions on multiple levels to promote artificial intelligence transparency and derive risk factors warranting further investigation.</p>\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\" \",\"pages\":\"891-903\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259465/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44161-025-00679-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00679-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
室性心律失常引起的心源性猝死是世界范围内死亡的主要原因。肥厚性心肌病(HCM)患者的心律失常死亡预测具有挑战性,目前的临床指南表现出较低的性能和不一致的准确性。在这里,我们提出了一种深度学习方法MAARS(多模态人工智能室性心律失常风险分层),通过分析多模态医疗数据来预测HCM患者的致命心律失常事件。MAARS基于变压器的神经网络从电子健康记录、超声心动图和放射学报告以及对比增强心脏磁共振图像中学习,后者是该模型的独特功能。MAARS在内部和外部队列中的曲线下面积分别为0.89(95%可信区间(CI) 0.79-0.94)和0.81 (95% CI 0.69-0.93),比目前的临床指南高出0.27-0.35(内部)和0.22-0.30(外部)。与临床指南相比,它显示了跨人口亚组的公平性。我们在多个层面上解释MAARS的预测,以提高人工智能的透明度,并得出需要进一步调查的风险因素。
Multimodal AI to forecast arrhythmic death in hypertrophic cardiomyopathy.
Sudden cardiac death from ventricular arrhythmias is a leading cause of mortality worldwide. Arrhythmic death prognostication is challenging in patients with hypertrophic cardiomyopathy (HCM), a setting where current clinical guidelines show low performance and inconsistent accuracy. Here, we present a deep learning approach, MAARS (Multimodal Artificial intelligence for ventricular Arrhythmia Risk Stratification), to forecast lethal arrhythmia events in patients with HCM by analyzing multimodal medical data. MAARS' transformer-based neural networks learn from electronic health records, echocardiogram and radiology reports, and contrast-enhanced cardiac magnetic resonance images, the latter being a unique feature of this model. MAARS achieves an area under the curve of 0.89 (95% confidence interval (CI) 0.79-0.94) and 0.81 (95% CI 0.69-0.93) in internal and external cohorts and outperforms current clinical guidelines by 0.27-0.35 (internal) and 0.22-0.30 (external). In contrast to clinical guidelines, it demonstrates fairness across demographic subgroups. We interpret MAARS' predictions on multiple levels to promote artificial intelligence transparency and derive risk factors warranting further investigation.