多模式人工智能预测肥厚性心肌病患者心律失常死亡。

IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Nature cardiovascular research Pub Date : 2025-07-01 Epub Date: 2025-07-02 DOI:10.1038/s44161-025-00679-1
Changxin Lai, Minglang Yin, Eugene G Kholmovski, Dan M Popescu, Dai-Yin Lu, Erica Scherer, Edem Binka, Stefan L Zimmerman, Jonathan Chrispin, Allison G Hays, Dermot M Phelan, M Roselle Abraham, Natalia A Trayanova
{"title":"多模式人工智能预测肥厚性心肌病患者心律失常死亡。","authors":"Changxin Lai, Minglang Yin, Eugene G Kholmovski, Dan M Popescu, Dai-Yin Lu, Erica Scherer, Edem Binka, Stefan L Zimmerman, Jonathan Chrispin, Allison G Hays, Dermot M Phelan, M Roselle Abraham, Natalia A Trayanova","doi":"10.1038/s44161-025-00679-1","DOIUrl":null,"url":null,"abstract":"<p><p>Sudden cardiac death from ventricular arrhythmias is a leading cause of mortality worldwide. Arrhythmic death prognostication is challenging in patients with hypertrophic cardiomyopathy (HCM), a setting where current clinical guidelines show low performance and inconsistent accuracy. Here, we present a deep learning approach, MAARS (Multimodal Artificial intelligence for ventricular Arrhythmia Risk Stratification), to forecast lethal arrhythmia events in patients with HCM by analyzing multimodal medical data. MAARS' transformer-based neural networks learn from electronic health records, echocardiogram and radiology reports, and contrast-enhanced cardiac magnetic resonance images, the latter being a unique feature of this model. MAARS achieves an area under the curve of 0.89 (95% confidence interval (CI) 0.79-0.94) and 0.81 (95% CI 0.69-0.93) in internal and external cohorts and outperforms current clinical guidelines by 0.27-0.35 (internal) and 0.22-0.30 (external). In contrast to clinical guidelines, it demonstrates fairness across demographic subgroups. We interpret MAARS' predictions on multiple levels to promote artificial intelligence transparency and derive risk factors warranting further investigation.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":"891-903"},"PeriodicalIF":10.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259465/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal AI to forecast arrhythmic death in hypertrophic cardiomyopathy.\",\"authors\":\"Changxin Lai, Minglang Yin, Eugene G Kholmovski, Dan M Popescu, Dai-Yin Lu, Erica Scherer, Edem Binka, Stefan L Zimmerman, Jonathan Chrispin, Allison G Hays, Dermot M Phelan, M Roselle Abraham, Natalia A Trayanova\",\"doi\":\"10.1038/s44161-025-00679-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sudden cardiac death from ventricular arrhythmias is a leading cause of mortality worldwide. Arrhythmic death prognostication is challenging in patients with hypertrophic cardiomyopathy (HCM), a setting where current clinical guidelines show low performance and inconsistent accuracy. Here, we present a deep learning approach, MAARS (Multimodal Artificial intelligence for ventricular Arrhythmia Risk Stratification), to forecast lethal arrhythmia events in patients with HCM by analyzing multimodal medical data. MAARS' transformer-based neural networks learn from electronic health records, echocardiogram and radiology reports, and contrast-enhanced cardiac magnetic resonance images, the latter being a unique feature of this model. MAARS achieves an area under the curve of 0.89 (95% confidence interval (CI) 0.79-0.94) and 0.81 (95% CI 0.69-0.93) in internal and external cohorts and outperforms current clinical guidelines by 0.27-0.35 (internal) and 0.22-0.30 (external). In contrast to clinical guidelines, it demonstrates fairness across demographic subgroups. We interpret MAARS' predictions on multiple levels to promote artificial intelligence transparency and derive risk factors warranting further investigation.</p>\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\" \",\"pages\":\"891-903\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259465/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44161-025-00679-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00679-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

室性心律失常引起的心源性猝死是世界范围内死亡的主要原因。肥厚性心肌病(HCM)患者的心律失常死亡预测具有挑战性,目前的临床指南表现出较低的性能和不一致的准确性。在这里,我们提出了一种深度学习方法MAARS(多模态人工智能室性心律失常风险分层),通过分析多模态医疗数据来预测HCM患者的致命心律失常事件。MAARS基于变压器的神经网络从电子健康记录、超声心动图和放射学报告以及对比增强心脏磁共振图像中学习,后者是该模型的独特功能。MAARS在内部和外部队列中的曲线下面积分别为0.89(95%可信区间(CI) 0.79-0.94)和0.81 (95% CI 0.69-0.93),比目前的临床指南高出0.27-0.35(内部)和0.22-0.30(外部)。与临床指南相比,它显示了跨人口亚组的公平性。我们在多个层面上解释MAARS的预测,以提高人工智能的透明度,并得出需要进一步调查的风险因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal AI to forecast arrhythmic death in hypertrophic cardiomyopathy.

Sudden cardiac death from ventricular arrhythmias is a leading cause of mortality worldwide. Arrhythmic death prognostication is challenging in patients with hypertrophic cardiomyopathy (HCM), a setting where current clinical guidelines show low performance and inconsistent accuracy. Here, we present a deep learning approach, MAARS (Multimodal Artificial intelligence for ventricular Arrhythmia Risk Stratification), to forecast lethal arrhythmia events in patients with HCM by analyzing multimodal medical data. MAARS' transformer-based neural networks learn from electronic health records, echocardiogram and radiology reports, and contrast-enhanced cardiac magnetic resonance images, the latter being a unique feature of this model. MAARS achieves an area under the curve of 0.89 (95% confidence interval (CI) 0.79-0.94) and 0.81 (95% CI 0.69-0.93) in internal and external cohorts and outperforms current clinical guidelines by 0.27-0.35 (internal) and 0.22-0.30 (external). In contrast to clinical guidelines, it demonstrates fairness across demographic subgroups. We interpret MAARS' predictions on multiple levels to promote artificial intelligence transparency and derive risk factors warranting further investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信