{"title":"转录因子EB通过诱导线粒体自噬抑制NLRP3炎性体激活,改善胎鼠缺氧肺动脉高压。","authors":"Chaohong Chen, Zaoye Xie, Dang Ao, Yinhui Chen, Ling Liu, Chengyan Li","doi":"10.1038/s41598-025-07068-5","DOIUrl":null,"url":null,"abstract":"<p><p>Persistent pulmonary hypertension of the newborn (PPHN) represents a life-threatening cardiopulmonary condition characterized by hypoxia-driven pulmonary vascular remodeling. While transcription factor EB (TFEB), a master regulator of cellular adaptation to hypoxia, has been implicated in vascular pathologies, its mechanistic role in PPHN remains undefined. This study elucidates the molecular interplay of TFEB in hypoxia-induced PPHN pathogenesis. Fetal rat models of hypoxia-induced PPHN, including untreated hypoxic models and hypoxic models treated with the TFEB inhibitor Eltrombopag (EO), as well as a hypoxia-induced human pulmonary artery endothelial cell (HPAEC) model, were established. Multimodal assessments, including histopathology, qRT-PCR, JC-1 staining, immunofluorescence, flow cytometry, and Western blotting, were employed to evaluate the effects of TFEB on mitophagy and NLRP3 inflammasome. In the hypoxia group, significant thickening of the pulmonary arterioles and right ventricular wall was observed. Immunostaining revealed a significant increase in the relative staining density of TFEB-positive, NLRP3-positive, and LC3-positive cells, alongside elevated expression of mitophagy-proteins and NLRP3 inflammasome-related proteins. TFEB inhibition downregulated the expression of PINK1, TOMM20, COX IV, P62, and LC3II/I ratio, impairing mitophagy, while upregulating eNOS, NLRP3, and GSDMD, thereby enhancing NLRP3 activation and pyroptosis. In the EO group, fetal rats exhibited more pronounced pulmonary arteriole thickening, intensified fluorescence signals for NLRP3, caspase-1, and GSDMD, reduced mitophagy-related protein expression, and further elevated NLRP3 inflammasome-related protein and GSDMD expression. TFEB exerts a protective effect in PPHN by inhibiting NLRP3 inflammasome activation through PINK1/Parkin-mediated mitophagy, highlighting TFEB's potential as a therapeutic target for hypoxia-induced PPHN.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"20356"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12223042/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcription factor EB improves hypoxic pulmonary hypertension in fetal rats by suppressing NLRP3 inflammasome activation via induction of mitophagy.\",\"authors\":\"Chaohong Chen, Zaoye Xie, Dang Ao, Yinhui Chen, Ling Liu, Chengyan Li\",\"doi\":\"10.1038/s41598-025-07068-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Persistent pulmonary hypertension of the newborn (PPHN) represents a life-threatening cardiopulmonary condition characterized by hypoxia-driven pulmonary vascular remodeling. While transcription factor EB (TFEB), a master regulator of cellular adaptation to hypoxia, has been implicated in vascular pathologies, its mechanistic role in PPHN remains undefined. This study elucidates the molecular interplay of TFEB in hypoxia-induced PPHN pathogenesis. Fetal rat models of hypoxia-induced PPHN, including untreated hypoxic models and hypoxic models treated with the TFEB inhibitor Eltrombopag (EO), as well as a hypoxia-induced human pulmonary artery endothelial cell (HPAEC) model, were established. Multimodal assessments, including histopathology, qRT-PCR, JC-1 staining, immunofluorescence, flow cytometry, and Western blotting, were employed to evaluate the effects of TFEB on mitophagy and NLRP3 inflammasome. In the hypoxia group, significant thickening of the pulmonary arterioles and right ventricular wall was observed. Immunostaining revealed a significant increase in the relative staining density of TFEB-positive, NLRP3-positive, and LC3-positive cells, alongside elevated expression of mitophagy-proteins and NLRP3 inflammasome-related proteins. TFEB inhibition downregulated the expression of PINK1, TOMM20, COX IV, P62, and LC3II/I ratio, impairing mitophagy, while upregulating eNOS, NLRP3, and GSDMD, thereby enhancing NLRP3 activation and pyroptosis. In the EO group, fetal rats exhibited more pronounced pulmonary arteriole thickening, intensified fluorescence signals for NLRP3, caspase-1, and GSDMD, reduced mitophagy-related protein expression, and further elevated NLRP3 inflammasome-related protein and GSDMD expression. TFEB exerts a protective effect in PPHN by inhibiting NLRP3 inflammasome activation through PINK1/Parkin-mediated mitophagy, highlighting TFEB's potential as a therapeutic target for hypoxia-induced PPHN.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"20356\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12223042/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-07068-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07068-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Transcription factor EB improves hypoxic pulmonary hypertension in fetal rats by suppressing NLRP3 inflammasome activation via induction of mitophagy.
Persistent pulmonary hypertension of the newborn (PPHN) represents a life-threatening cardiopulmonary condition characterized by hypoxia-driven pulmonary vascular remodeling. While transcription factor EB (TFEB), a master regulator of cellular adaptation to hypoxia, has been implicated in vascular pathologies, its mechanistic role in PPHN remains undefined. This study elucidates the molecular interplay of TFEB in hypoxia-induced PPHN pathogenesis. Fetal rat models of hypoxia-induced PPHN, including untreated hypoxic models and hypoxic models treated with the TFEB inhibitor Eltrombopag (EO), as well as a hypoxia-induced human pulmonary artery endothelial cell (HPAEC) model, were established. Multimodal assessments, including histopathology, qRT-PCR, JC-1 staining, immunofluorescence, flow cytometry, and Western blotting, were employed to evaluate the effects of TFEB on mitophagy and NLRP3 inflammasome. In the hypoxia group, significant thickening of the pulmonary arterioles and right ventricular wall was observed. Immunostaining revealed a significant increase in the relative staining density of TFEB-positive, NLRP3-positive, and LC3-positive cells, alongside elevated expression of mitophagy-proteins and NLRP3 inflammasome-related proteins. TFEB inhibition downregulated the expression of PINK1, TOMM20, COX IV, P62, and LC3II/I ratio, impairing mitophagy, while upregulating eNOS, NLRP3, and GSDMD, thereby enhancing NLRP3 activation and pyroptosis. In the EO group, fetal rats exhibited more pronounced pulmonary arteriole thickening, intensified fluorescence signals for NLRP3, caspase-1, and GSDMD, reduced mitophagy-related protein expression, and further elevated NLRP3 inflammasome-related protein and GSDMD expression. TFEB exerts a protective effect in PPHN by inhibiting NLRP3 inflammasome activation through PINK1/Parkin-mediated mitophagy, highlighting TFEB's potential as a therapeutic target for hypoxia-induced PPHN.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.