完全由蛋白质制造和提供动力的三维机器人结构。

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Haiyang Jia, Huan Sun, Johannes Flommersfeld, Wentao Shi, Frank Siedler, Petra Schwille
{"title":"完全由蛋白质制造和提供动力的三维机器人结构。","authors":"Haiyang Jia, Huan Sun, Johannes Flommersfeld, Wentao Shi, Frank Siedler, Petra Schwille","doi":"10.1038/s41596-025-01186-0","DOIUrl":null,"url":null,"abstract":"<p><p>Assembling and upscaling biomolecular activity to perform work in man-made devices is a challenge in synthetic biology. Here we report the step-by-step process to construct fully protein-based micro-three-dimensional (3D) printed robotic structures, which are coated with and actuated by a minimal actomyosin cortex. This approach can be used to program self-powered soft robots assembled from multiple biomolecular modules, devising biophysical assays to quantify active forces produced in 3D and engineering smart 3D microchips for synthetic cell assembly. The procedure covers the establishment of 3D printing microstructures from protein materials, the assembly of actomyosin-based active coatings and the robotic structure design and characterization. The detailed step-by-step instructions will guide scientists in replicating the preparation procedures, facilitating the adoption of biomolecular microrobots and the development of 3D protein-based robotic technology and their applications. The procedure is suited for users with expertise in biomaterials and requires 15 d to complete.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional robotic structures fabricated and powered entirely with proteins.\",\"authors\":\"Haiyang Jia, Huan Sun, Johannes Flommersfeld, Wentao Shi, Frank Siedler, Petra Schwille\",\"doi\":\"10.1038/s41596-025-01186-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assembling and upscaling biomolecular activity to perform work in man-made devices is a challenge in synthetic biology. Here we report the step-by-step process to construct fully protein-based micro-three-dimensional (3D) printed robotic structures, which are coated with and actuated by a minimal actomyosin cortex. This approach can be used to program self-powered soft robots assembled from multiple biomolecular modules, devising biophysical assays to quantify active forces produced in 3D and engineering smart 3D microchips for synthetic cell assembly. The procedure covers the establishment of 3D printing microstructures from protein materials, the assembly of actomyosin-based active coatings and the robotic structure design and characterization. The detailed step-by-step instructions will guide scientists in replicating the preparation procedures, facilitating the adoption of biomolecular microrobots and the development of 3D protein-based robotic technology and their applications. The procedure is suited for users with expertise in biomaterials and requires 15 d to complete.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-025-01186-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01186-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在人造装置中组装和提升生物分子活性是合成生物学的一个挑战。在这里,我们报告了一步一步构建完全基于蛋白质的微三维(3D)打印机器人结构的过程,该机器人结构由最小的肌动球蛋白皮层包裹并驱动。这种方法可用于编程由多个生物分子模块组装而成的自供电软机器人,设计生物物理分析来量化3D中产生的积极力量,并设计用于合成细胞组装的智能3D微芯片。该程序涵盖了从蛋白质材料建立3D打印微结构,基于肌动球蛋白的活性涂层的组装以及机器人结构的设计和表征。详细的分步说明将指导科学家复制制备程序,促进生物分子微型机器人的采用和基于3D蛋白质的机器人技术及其应用的发展。该程序适合具有生物材料专业知识的用户,需要15天完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional robotic structures fabricated and powered entirely with proteins.

Assembling and upscaling biomolecular activity to perform work in man-made devices is a challenge in synthetic biology. Here we report the step-by-step process to construct fully protein-based micro-three-dimensional (3D) printed robotic structures, which are coated with and actuated by a minimal actomyosin cortex. This approach can be used to program self-powered soft robots assembled from multiple biomolecular modules, devising biophysical assays to quantify active forces produced in 3D and engineering smart 3D microchips for synthetic cell assembly. The procedure covers the establishment of 3D printing microstructures from protein materials, the assembly of actomyosin-based active coatings and the robotic structure design and characterization. The detailed step-by-step instructions will guide scientists in replicating the preparation procedures, facilitating the adoption of biomolecular microrobots and the development of 3D protein-based robotic technology and their applications. The procedure is suited for users with expertise in biomaterials and requires 15 d to complete.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信