Benoît Paix, Alexane Thivet, Celso Domingos, Özlem Erol, Niels van der Windt, Young H Choi, Nicole J de Voogd
{"title":"加勒比海绵全息生物在中胚层以外的适应策略。","authors":"Benoît Paix, Alexane Thivet, Celso Domingos, Özlem Erol, Niels van der Windt, Young H Choi, Nicole J de Voogd","doi":"10.1186/s40168-025-02146-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Marine sponges and their microbiomes function together as holobionts, playing essential roles in ecosystem dynamics and exhibiting remarkable adaptability across depth gradients. This study utilized a multi-omics approach, integrating microbiome and metabolome analyses, to investigate adaptive strategies in sponge holobionts inhabiting the mesophotic (80-125 m), upper-rariphotic (125-200 m), and lower-rariphotic (200-305 m) zones of Curaçao. We hypothesized that depth-related environmental factors drive distinct adaptive strategies, similar to patterns observed in fish and coral assemblages.</p><p><strong>Results: </strong>Results revealed major differences in holometabolomes and microbial communities between Demospongiae and Hexactinellida sponges, reflecting class-specific adaptive strategies. Notably, phospholipid homeoviscous adaptation to temperature and pressure might emerge as a key mechanism in phosphorus metabolism. Adaptations in nitrogen metabolism were linked to diverse ammonia oxidizing archaea (AOA) symbionts, and dissolved organic matter cycling. Hexactinellid microbiomes exhibited intra-specific heterogeneity; however, species-specific associations with AOA symbionts such as Cenarchaeum and Nitrosopumilus were observed. Additionally, the lower-rariphotic hexactinellid holometabolomes highlighted the significance of the nested ecosystem concept through the identification of secondary metabolites produced by their associated fauna (aphrocallistins by zoanthids and xanthurenic acid by shrimp).</p><p><strong>Conclusions: </strong>This study highlights the ecological significance of sponge holobionts in mesophotic and rariphotic ecosystems, revealing diverse adaptations to unique physicochemical conditions and biotic interactions. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"157"},"PeriodicalIF":13.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220500/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptive strategies of Caribbean sponge holobionts beyond the mesophotic zone.\",\"authors\":\"Benoît Paix, Alexane Thivet, Celso Domingos, Özlem Erol, Niels van der Windt, Young H Choi, Nicole J de Voogd\",\"doi\":\"10.1186/s40168-025-02146-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Marine sponges and their microbiomes function together as holobionts, playing essential roles in ecosystem dynamics and exhibiting remarkable adaptability across depth gradients. This study utilized a multi-omics approach, integrating microbiome and metabolome analyses, to investigate adaptive strategies in sponge holobionts inhabiting the mesophotic (80-125 m), upper-rariphotic (125-200 m), and lower-rariphotic (200-305 m) zones of Curaçao. We hypothesized that depth-related environmental factors drive distinct adaptive strategies, similar to patterns observed in fish and coral assemblages.</p><p><strong>Results: </strong>Results revealed major differences in holometabolomes and microbial communities between Demospongiae and Hexactinellida sponges, reflecting class-specific adaptive strategies. Notably, phospholipid homeoviscous adaptation to temperature and pressure might emerge as a key mechanism in phosphorus metabolism. Adaptations in nitrogen metabolism were linked to diverse ammonia oxidizing archaea (AOA) symbionts, and dissolved organic matter cycling. Hexactinellid microbiomes exhibited intra-specific heterogeneity; however, species-specific associations with AOA symbionts such as Cenarchaeum and Nitrosopumilus were observed. Additionally, the lower-rariphotic hexactinellid holometabolomes highlighted the significance of the nested ecosystem concept through the identification of secondary metabolites produced by their associated fauna (aphrocallistins by zoanthids and xanthurenic acid by shrimp).</p><p><strong>Conclusions: </strong>This study highlights the ecological significance of sponge holobionts in mesophotic and rariphotic ecosystems, revealing diverse adaptations to unique physicochemical conditions and biotic interactions. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"13 1\",\"pages\":\"157\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220500/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-025-02146-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02146-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Adaptive strategies of Caribbean sponge holobionts beyond the mesophotic zone.
Background: Marine sponges and their microbiomes function together as holobionts, playing essential roles in ecosystem dynamics and exhibiting remarkable adaptability across depth gradients. This study utilized a multi-omics approach, integrating microbiome and metabolome analyses, to investigate adaptive strategies in sponge holobionts inhabiting the mesophotic (80-125 m), upper-rariphotic (125-200 m), and lower-rariphotic (200-305 m) zones of Curaçao. We hypothesized that depth-related environmental factors drive distinct adaptive strategies, similar to patterns observed in fish and coral assemblages.
Results: Results revealed major differences in holometabolomes and microbial communities between Demospongiae and Hexactinellida sponges, reflecting class-specific adaptive strategies. Notably, phospholipid homeoviscous adaptation to temperature and pressure might emerge as a key mechanism in phosphorus metabolism. Adaptations in nitrogen metabolism were linked to diverse ammonia oxidizing archaea (AOA) symbionts, and dissolved organic matter cycling. Hexactinellid microbiomes exhibited intra-specific heterogeneity; however, species-specific associations with AOA symbionts such as Cenarchaeum and Nitrosopumilus were observed. Additionally, the lower-rariphotic hexactinellid holometabolomes highlighted the significance of the nested ecosystem concept through the identification of secondary metabolites produced by their associated fauna (aphrocallistins by zoanthids and xanthurenic acid by shrimp).
Conclusions: This study highlights the ecological significance of sponge holobionts in mesophotic and rariphotic ecosystems, revealing diverse adaptations to unique physicochemical conditions and biotic interactions. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.