Martyna Cieślik, Michał Wójcicki, Paweł Migdał, Ilona Grygiel, Olaf Bajrak, Filip Orwat, Andrzej Górski, Ewa Jończyk-Matysiak
{"title":"对抗生物膜:噬菌体消除泌尿导管上由多重耐药的贺氏肠杆菌形成的生物膜。","authors":"Martyna Cieślik, Michał Wójcicki, Paweł Migdał, Ilona Grygiel, Olaf Bajrak, Filip Orwat, Andrzej Górski, Ewa Jończyk-Matysiak","doi":"10.1007/s00430-025-00844-0","DOIUrl":null,"url":null,"abstract":"<p><p>The Enterobacter cloacae complex (ECC) is a prevalent nosocomial pathogen associated with various human infections, which currently comprises several species, including Enterobacter cloacae and Enterobacter hormaechei. Strains capable of producing biofilm on various biotic and abiotic surfaces pose a particular threat. Therefore, we focused on three E. hormaechei strains in whose genomes the presence of the biofilm-related genes: fimA, csgA, csgD, and sdiA was confirmed. Kinetic of biofilm formation by these strains on urological catheters depended on the catheter material (silicon or latex), temperature (24 °C or 37 °C) and incubation time. The ability of phages to disrupt biofilm formation was assessed and found to be the most effective when phages were applied at an early stages of this process. Moreover, destruction of existing biofilm by bacteriophages and/or silver or copper nanoparticles was strain-dependent. Incubation with Enterobacter-specific bacteriophages enabled, in some cases, almost complete eradication of three-day biofilms attached to urological catheters. In genomes of two Enterobacter-specific bacteriophages the presence of regions encoding proteins with lytic activity were identified (6 regions in Entb_43 phage and 4 regions in Entb_45 phage genomes, respectively). These results highlight the threat of biofilm-related infections, but also indicate the multifaceted anti-biofilm activity of bacteriophages, which should be considered for useful in clinical practice.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"214 1","pages":"33"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226686/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fighting biofilm: bacteriophages eliminate biofilm formed by multidrug-resistant Enterobacter hormaechei on urological catheters.\",\"authors\":\"Martyna Cieślik, Michał Wójcicki, Paweł Migdał, Ilona Grygiel, Olaf Bajrak, Filip Orwat, Andrzej Górski, Ewa Jończyk-Matysiak\",\"doi\":\"10.1007/s00430-025-00844-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Enterobacter cloacae complex (ECC) is a prevalent nosocomial pathogen associated with various human infections, which currently comprises several species, including Enterobacter cloacae and Enterobacter hormaechei. Strains capable of producing biofilm on various biotic and abiotic surfaces pose a particular threat. Therefore, we focused on three E. hormaechei strains in whose genomes the presence of the biofilm-related genes: fimA, csgA, csgD, and sdiA was confirmed. Kinetic of biofilm formation by these strains on urological catheters depended on the catheter material (silicon or latex), temperature (24 °C or 37 °C) and incubation time. The ability of phages to disrupt biofilm formation was assessed and found to be the most effective when phages were applied at an early stages of this process. Moreover, destruction of existing biofilm by bacteriophages and/or silver or copper nanoparticles was strain-dependent. Incubation with Enterobacter-specific bacteriophages enabled, in some cases, almost complete eradication of three-day biofilms attached to urological catheters. In genomes of two Enterobacter-specific bacteriophages the presence of regions encoding proteins with lytic activity were identified (6 regions in Entb_43 phage and 4 regions in Entb_45 phage genomes, respectively). These results highlight the threat of biofilm-related infections, but also indicate the multifaceted anti-biofilm activity of bacteriophages, which should be considered for useful in clinical practice.</p>\",\"PeriodicalId\":18369,\"journal\":{\"name\":\"Medical Microbiology and Immunology\",\"volume\":\"214 1\",\"pages\":\"33\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226686/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00430-025-00844-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-025-00844-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Fighting biofilm: bacteriophages eliminate biofilm formed by multidrug-resistant Enterobacter hormaechei on urological catheters.
The Enterobacter cloacae complex (ECC) is a prevalent nosocomial pathogen associated with various human infections, which currently comprises several species, including Enterobacter cloacae and Enterobacter hormaechei. Strains capable of producing biofilm on various biotic and abiotic surfaces pose a particular threat. Therefore, we focused on three E. hormaechei strains in whose genomes the presence of the biofilm-related genes: fimA, csgA, csgD, and sdiA was confirmed. Kinetic of biofilm formation by these strains on urological catheters depended on the catheter material (silicon or latex), temperature (24 °C or 37 °C) and incubation time. The ability of phages to disrupt biofilm formation was assessed and found to be the most effective when phages were applied at an early stages of this process. Moreover, destruction of existing biofilm by bacteriophages and/or silver or copper nanoparticles was strain-dependent. Incubation with Enterobacter-specific bacteriophages enabled, in some cases, almost complete eradication of three-day biofilms attached to urological catheters. In genomes of two Enterobacter-specific bacteriophages the presence of regions encoding proteins with lytic activity were identified (6 regions in Entb_43 phage and 4 regions in Entb_45 phage genomes, respectively). These results highlight the threat of biofilm-related infections, but also indicate the multifaceted anti-biofilm activity of bacteriophages, which should be considered for useful in clinical practice.
期刊介绍:
Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens.
MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question.
The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention.
The following categories of manuscripts will not be considered for publication in MMIM:
submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest,
manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs,
manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action,
manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem,
case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.