{"title":"在PCOS大鼠模型中,产后过度喂养可引起肠道菌群紊乱并损害GPR43/FIAF/LPL通路。","authors":"Nataša Veličković, Miloš Vratarić, Bojana Mićić, Ana Teofilović, Marina Radovanović, Sofija Ignjatović, Uroš Gašić, Ana Djordjevic, Djuro Macut, Danijela Vojnović Milutinović","doi":"10.1007/s13105-025-01103-9","DOIUrl":null,"url":null,"abstract":"<p><p>Women with polycystic ovary syndrome (PCOS) has high incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). The development of PCOS-associated MASLD is accelerated by prepubertal obesity, therefore, we analyzed the impact of postnatal overfeeding-induced obesity on the gut microbiota and hepatic lipid metabolism in the PCOS rat model. Wistar rats were divided into 4 groups, where treatment with 5α-dihydrotestosterone (5α-DHT) stimulated hyperandrogenemia (DHT groups), whereas litter size reduction induced early postnatal overfeeding and obesity (SL groups). The fecal microbiota composition and diversity was analyzed by 16S rRNA sequencing. The bacterial metabolites level was measured by mass spectrometry. Hematoxylin-eosin staining, Western blots, and qRT-PCR were used to analyze hepatic lipid metabolism. Our results show that postnatal overfeeding shifted the microbiota composition towards obesity-associated genera, while hyperandrogenemia led to reduced β-diversity and increased abundance of androgen-regulated genera. Interaction of treatments reduced α- and β-diversity and decreased the abundance of beneficial butyrate-producing genera Roseburia, Oscillospira, and Ruminococcus and butyric acid plasma level. Shift in microbiota composition and activity was accompanied by decreased expression of G-protein coupled receptor (GPR) 43, fasting-induced adipocyte factor (FIAF) and increased expression of lipoprotein lipase (LPL). In accordance with altered GPR43 and FIAF/LPL pathway, increased expression of lipogenic transcription factors was observed in SL-DHT animals, but this did not result in hepatic lipid deposition. Our results demonstrated that postnatal overfeeding contributes to decreased richness and changes in gut microbiota composition in the PCOS animal model that is associated with impaired hepatic lipid metabolism, which may accelerate development of MASLD.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Postnatal overfeeding induces gut microbiota disturbances and impairs GPR43/FIAF/LPL pathway in the rat model of PCOS.\",\"authors\":\"Nataša Veličković, Miloš Vratarić, Bojana Mićić, Ana Teofilović, Marina Radovanović, Sofija Ignjatović, Uroš Gašić, Ana Djordjevic, Djuro Macut, Danijela Vojnović Milutinović\",\"doi\":\"10.1007/s13105-025-01103-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Women with polycystic ovary syndrome (PCOS) has high incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). The development of PCOS-associated MASLD is accelerated by prepubertal obesity, therefore, we analyzed the impact of postnatal overfeeding-induced obesity on the gut microbiota and hepatic lipid metabolism in the PCOS rat model. Wistar rats were divided into 4 groups, where treatment with 5α-dihydrotestosterone (5α-DHT) stimulated hyperandrogenemia (DHT groups), whereas litter size reduction induced early postnatal overfeeding and obesity (SL groups). The fecal microbiota composition and diversity was analyzed by 16S rRNA sequencing. The bacterial metabolites level was measured by mass spectrometry. Hematoxylin-eosin staining, Western blots, and qRT-PCR were used to analyze hepatic lipid metabolism. Our results show that postnatal overfeeding shifted the microbiota composition towards obesity-associated genera, while hyperandrogenemia led to reduced β-diversity and increased abundance of androgen-regulated genera. Interaction of treatments reduced α- and β-diversity and decreased the abundance of beneficial butyrate-producing genera Roseburia, Oscillospira, and Ruminococcus and butyric acid plasma level. Shift in microbiota composition and activity was accompanied by decreased expression of G-protein coupled receptor (GPR) 43, fasting-induced adipocyte factor (FIAF) and increased expression of lipoprotein lipase (LPL). In accordance with altered GPR43 and FIAF/LPL pathway, increased expression of lipogenic transcription factors was observed in SL-DHT animals, but this did not result in hepatic lipid deposition. Our results demonstrated that postnatal overfeeding contributes to decreased richness and changes in gut microbiota composition in the PCOS animal model that is associated with impaired hepatic lipid metabolism, which may accelerate development of MASLD.</p>\",\"PeriodicalId\":16779,\"journal\":{\"name\":\"Journal of physiology and biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physiology and biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13105-025-01103-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-025-01103-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Postnatal overfeeding induces gut microbiota disturbances and impairs GPR43/FIAF/LPL pathway in the rat model of PCOS.
Women with polycystic ovary syndrome (PCOS) has high incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). The development of PCOS-associated MASLD is accelerated by prepubertal obesity, therefore, we analyzed the impact of postnatal overfeeding-induced obesity on the gut microbiota and hepatic lipid metabolism in the PCOS rat model. Wistar rats were divided into 4 groups, where treatment with 5α-dihydrotestosterone (5α-DHT) stimulated hyperandrogenemia (DHT groups), whereas litter size reduction induced early postnatal overfeeding and obesity (SL groups). The fecal microbiota composition and diversity was analyzed by 16S rRNA sequencing. The bacterial metabolites level was measured by mass spectrometry. Hematoxylin-eosin staining, Western blots, and qRT-PCR were used to analyze hepatic lipid metabolism. Our results show that postnatal overfeeding shifted the microbiota composition towards obesity-associated genera, while hyperandrogenemia led to reduced β-diversity and increased abundance of androgen-regulated genera. Interaction of treatments reduced α- and β-diversity and decreased the abundance of beneficial butyrate-producing genera Roseburia, Oscillospira, and Ruminococcus and butyric acid plasma level. Shift in microbiota composition and activity was accompanied by decreased expression of G-protein coupled receptor (GPR) 43, fasting-induced adipocyte factor (FIAF) and increased expression of lipoprotein lipase (LPL). In accordance with altered GPR43 and FIAF/LPL pathway, increased expression of lipogenic transcription factors was observed in SL-DHT animals, but this did not result in hepatic lipid deposition. Our results demonstrated that postnatal overfeeding contributes to decreased richness and changes in gut microbiota composition in the PCOS animal model that is associated with impaired hepatic lipid metabolism, which may accelerate development of MASLD.
期刊介绍:
The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.