3D生物打印水凝胶神经血管单元模型用于糖尿病周围神经病变的体外研究。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Yanping Guo, Runze Tian, Zerui Chen, Yuhong Wang, Changjiang Yu, Nanbo Liu, Tucheng Sun, Shuoji Zhu, Tingting Liu, Bin Yao, Ping Zhu
{"title":"3D生物打印水凝胶神经血管单元模型用于糖尿病周围神经病变的体外研究。","authors":"Yanping Guo, Runze Tian, Zerui Chen, Yuhong Wang, Changjiang Yu, Nanbo Liu, Tucheng Sun, Shuoji Zhu, Tingting Liu, Bin Yao, Ping Zhu","doi":"10.1080/09205063.2025.2524056","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic peripheral neuropathy (DPN), a prevalent complication of diabetes, caused a significant morbidity and posed a heavy burden on society. Considering the lack of disease models <i>in vitro</i> for DPN and the advantages of 3D bioprinting in disease modeling, we employed 3D bioprinting technology based on GelMA hydrogel to construct neurovascular units to mimic peripheral nerves and vessels <i>in vitro</i>, further we built the pathological microenvironment characteristic of DPN when the treatment of high glucose in these units. Our 3D disease models closely recapitulated <i>in vivo</i> pathological conditions, including oxidative stress and inflammatory responses, which are key hallmarks of DPN. Then we explored the effects of cholesterol on DPN progression using our disease models <i>in vitro</i>. Moreover, the results of RNA-seq analysis revealed that cholesterol stimulation promoted neuron death and inhibited angiogenesis, thereby accelerating the progression of DPN. We identified <i>Fos</i> as a potential therapeutic target, given its role in regulating reactive oxygen species (ROS), neuron death, and transcriptional activity. This study provides valuable insights into the molecular mechanisms underlying the interaction between cholesterol and DPN, and highlights the potential for targeting cholesterol metabolism in the treatment of DPN.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-20"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D bioprinting hydrogel models of neurovascular unit for in vitro diabetic peripheral neuropathy study.\",\"authors\":\"Yanping Guo, Runze Tian, Zerui Chen, Yuhong Wang, Changjiang Yu, Nanbo Liu, Tucheng Sun, Shuoji Zhu, Tingting Liu, Bin Yao, Ping Zhu\",\"doi\":\"10.1080/09205063.2025.2524056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic peripheral neuropathy (DPN), a prevalent complication of diabetes, caused a significant morbidity and posed a heavy burden on society. Considering the lack of disease models <i>in vitro</i> for DPN and the advantages of 3D bioprinting in disease modeling, we employed 3D bioprinting technology based on GelMA hydrogel to construct neurovascular units to mimic peripheral nerves and vessels <i>in vitro</i>, further we built the pathological microenvironment characteristic of DPN when the treatment of high glucose in these units. Our 3D disease models closely recapitulated <i>in vivo</i> pathological conditions, including oxidative stress and inflammatory responses, which are key hallmarks of DPN. Then we explored the effects of cholesterol on DPN progression using our disease models <i>in vitro</i>. Moreover, the results of RNA-seq analysis revealed that cholesterol stimulation promoted neuron death and inhibited angiogenesis, thereby accelerating the progression of DPN. We identified <i>Fos</i> as a potential therapeutic target, given its role in regulating reactive oxygen species (ROS), neuron death, and transcriptional activity. This study provides valuable insights into the molecular mechanisms underlying the interaction between cholesterol and DPN, and highlights the potential for targeting cholesterol metabolism in the treatment of DPN.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2524056\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2524056","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病周围神经病变(DPN)是糖尿病的一种常见并发症,发病率高,给社会带来了沉重的负担。考虑到DPN体外疾病模型的缺乏和生物3D打印在疾病建模方面的优势,我们采用基于GelMA水凝胶的生物3D打印技术构建神经血管单元,模拟体外周围神经和血管,进一步构建DPN在高糖治疗时的病理微环境特征。我们的3D疾病模型紧密再现了DPN的体内病理状况,包括氧化应激和炎症反应,这是DPN的关键标志。然后,我们利用我们的疾病模型在体外探索胆固醇对DPN进展的影响。此外,RNA-seq分析结果显示,胆固醇刺激促进神经元死亡,抑制血管生成,从而加速DPN的进展。鉴于其在调节活性氧(ROS)、神经元死亡和转录活性方面的作用,我们确定Fos是一个潜在的治疗靶点。该研究为胆固醇与DPN相互作用的分子机制提供了有价值的见解,并强调了靶向胆固醇代谢治疗DPN的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D bioprinting hydrogel models of neurovascular unit for in vitro diabetic peripheral neuropathy study.

Diabetic peripheral neuropathy (DPN), a prevalent complication of diabetes, caused a significant morbidity and posed a heavy burden on society. Considering the lack of disease models in vitro for DPN and the advantages of 3D bioprinting in disease modeling, we employed 3D bioprinting technology based on GelMA hydrogel to construct neurovascular units to mimic peripheral nerves and vessels in vitro, further we built the pathological microenvironment characteristic of DPN when the treatment of high glucose in these units. Our 3D disease models closely recapitulated in vivo pathological conditions, including oxidative stress and inflammatory responses, which are key hallmarks of DPN. Then we explored the effects of cholesterol on DPN progression using our disease models in vitro. Moreover, the results of RNA-seq analysis revealed that cholesterol stimulation promoted neuron death and inhibited angiogenesis, thereby accelerating the progression of DPN. We identified Fos as a potential therapeutic target, given its role in regulating reactive oxygen species (ROS), neuron death, and transcriptional activity. This study provides valuable insights into the molecular mechanisms underlying the interaction between cholesterol and DPN, and highlights the potential for targeting cholesterol metabolism in the treatment of DPN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信